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Abstract 
 
 
 
The purpose of this primer is to provide an overview of the most common hand calculation methods 
used for criticality safety calculations. The most widely used tools available to a criticality safety 
practitioner are probably the common Monte Carlo or deterministic criticality safety codes, which 
can be used to model very complex systems. However, use of these codes can obscure the parameters 
that a particular fissile system may be sensitive to, whereas the hand calculation methods can be 
used to delve into the ways each parameter may affect the reactivity of a fissile material system. 
Further, practitioners must avoid using computer codes as devices that take inputs and simply 
provide outputs (i.e., a “black box”). Many years ago, pioneers such as Joe Thomas, David Smith, and 
Hugh Paxton, among others in the field of nuclear criticality safety, took the time before the advent 
of high-speed desktop computers to create simple hand methods for criticality safety analyses. Some 
of the methods can be used for single fissile units; others are applicable to fissile units arranged into 
simple array configurations. This primer discusses the applicability of the various methods, 
illustrates how they are used, and provides an interpretation of the various results. Some time 
investment will be needed to master the methods that could be most useful; however, they can 
provide the practitioner with very fast and accurate answers to criticality safety problems if they are 
used correctly and if critical data exist for the problem at hand. Hand calculation methods can be 
used as a starting point for more advanced calculations, and in many circumstances, they can 
provide sensitivity and perturbation information quicker than using a criticality code.
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1. Overview of Hand Calculation Methods 
 

1.1 Introduction 

 
The nuclear criticality safety practitioner has many tools available to analyze normal case and 

credible process upsets for criticality safety evaluation development. The most common tools are 
probably the Monte Carlo or the deterministic criticality safety codes, which can be used to model 
very complex systems. However, use of these codes can obscure the parameters that a particular 
fissile system may be sensitive to, and criticality safety practitioners must avoid using computer 
codes as devices that take inputs and simply provide outputs. Many years ago, pioneers such as Joe 
Thomas, David Smith, and Hugh Paxton, among others in the field of nuclear criticality safety, took 
the time before the advent of high-speed desktop computers to create simple hand calculation 
methods for criticality safety analyses. Some of the methods can be used for single fissile units 
whereas others can be used for fissile units arranged into simple array configurations. The following 
methods are discussed at some length in this primer. 
 
Single Unit Methods 
 

• One-group diffusion theory 
• One-group modified diffusion theory 
• Buckling conversions 
• Core-density conversions 

 
Array Unit Methods 
 

• Surface density method 
• Density analog method 
• Limiting surface density (NBN2) method 
• Solid angle method 

 
The goal of this primer is to provide some background for each method, to describe how each 

method is applicable and useful, and to provide example problems so that the criticality safety 
practitioner can apply the methods quickly and accurately. These hand calculation methods can 
provide a first look at a simple system to determine whether more complex calculations are 
warranted. Further, the hand methods can be used for parametric studies that identify which 
criticality safety parameters a fissile system may be sensitive to. 

 

1.2 Purpose of Hand Calculation Methods 

 
Hand calculation methods can take some time to learn and apply, but the time investment is 

valuable, particularly in gaining insight to the physics of fissile systems. The methods covered in this 
primer can be easily adapted to scripts, programming languages, and spreadsheets. Once the user 
has learned the methods, they can easily be used to perform comprehensive parametric calculations 
on individual parameters (mass, density, volume, concentration, etc.) and perturbation analyses.  
Further, they can provide a first look at simple single unit and array systems. For example, if 
diffusion theory is used to examine a worst-case process upset condition and if the infinite 
multiplication factor, k∞, for a particular system is much less than unity, there is no further need to 
perform calculations because a criticality event is not possible under the upset conditions. If the 
resulting k∞ is close to unity or exceeds unity, then further calculations are necessary.   
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Hand calculation methods are useful to provide the analyst with a better understanding of the 
basic physics of the problem. Computer calculations are convenient and very fast; however, it is 
sometimes difficult to relate the basic output provided by the codes to the basic physics involved. 
Thus, hand calculations can be valuable for new practitioners in developing intuition with respect to 
neutron transport physics, whereas advanced users can employ hand calculations as a starting point 
for more advanced calculations. 

1.3 Choosing the Appropriate Method 

 
The biggest challenge in applying these hand calculation methods to physical problems is 

choosing the appropriate or best method. The discussion that accompanies each hand method 
includes the applicability for the particular method and its limitations. For example, if a solid chunk 
of plutonium or uranium metal is being machined in a particular fissile material operation, the 
result of the machining could be the generation of small chips or turnings. Assuming that no 
moderating material is introduced to the machined plutonium or uranium metal, the density of the 
fissile material has been significantly reduced. Therefore, the best method to use would be the core-
density method. This primer provides the following information for each method: 

 
1. Overview of the method 
2. Applicability of the method to solve certain problems 
3. Example problems solved step-by-step 

 

1.4 Single Unit Hand Calculations 

 
The methods listed in Table 1 are valid for single fissile units only. The methods discussed for 

single units are the one-group and modified one-group diffusion theories, buckling conversions, and 
core-density conversions. These methods can be used to resolve a wide variety of criticality safety 
problems as summarized Table 1. 

 
Table 1. Single Unit Methods and Applicability Summary 

 
Single Unit Hand 

Calculation Method 
 

Applicability Summary 

One-group and 
Modified One-Group 
Diffusion Theories 

• Good for large, homogeneous systems with isotopes that have low neutron 
absorption.  

• Caution: Diffusion theory is not a good method to use for small systems, near 
boundaries, or in or near strong neutron absorbing materials. 

Buckling Conversions 

• Useful for simple geometries such as spherical, slab, or cylindrical systems.  
• Can convert the neutron leakage characteristics for a critical simple geometry to 

another simple geometry that has equivalent leakage characteristics, as long as 
critical data exist for a particular system. 

Core-Density 
Conversions 

• Can be applied to homogeneous, critical systems if the volume or density of the 
system changes uniformly.  

• Applicable to bare systems or those with a close-fitting reflector, as long as the 
reflector density remains constant. 
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1.5 Array Hand Calculations 

 
The methods listed in Table 2 are valid for fissile units arranged in certain array configurations. The 
methods discussed in this section are the surface density method, density analog method, the solid 
angle method, and the limiting surface density method or the NBN2 method. These methods can be 
used to resolve a wide variety of criticality safety problems in which fissile materials are arranged 
into various multiple-unit configurations. 
 

Table 2. Array Methods and Applicability Summary 
 

Array Hand 
Calculation 

Method 
Applicability Summary 

Surface Density 
Method 

• Useful for determining the subcritical center-to-center spacing for fissile materials stored 
or staged in finite array configurations where the size of the array is controlled in one 
direction 

• Useful for irregular shapes such as equipment stored on the floor 
• Considers 15.5 cm of water reflection on the top and bottom of the array 

Density Analog 
Method 

• Useful for determining the subcritical center-to-center spacing for fissile materials stored 
or staged in array configurations of any shape 

• Useful for irregular shapes such as equipment stored on the floor 
• Considers 20.0 cm of water reflection on the top and bottom of the array 

Limiting 
Surface Density 
(NBN2) Method 

• Useful for determining the critical center-to-center spacing for fissile materials stored or 
staged in array configurations of any shape (>64 units) 

• Useful for irregular shapes such as equipment stored on the floor 
• Data exists for powders, metals, up to an H/X of about 20 for some fissile materials 
• Data exists for arrays reflected by concrete instead of water 
• Can be used to calculate trends due to a change in unit shape or density 
• Considers 20.0 cm of water reflection on the top and bottom of the array 

Solid Angle 
Method 

• Useful for small numbers of moderated fissile units, because the basis for this method is 
experiments with aqueous solutions of fissile materials.  

• The multiplication factor for any individual unit cannot exceed 0.8, and the unit must be 
subcritical with a thick close-fitting water reflector.  

• The minimum separation distance between fissile units should be at least 0.3 meters, and 
the total allowed solid angle should not exceed 6 steradians.  

• Reflectors that are more effective than a thick water reflector should not be considered for 
this method.   

• Concrete reflection on three sides of the fissile material is considered bounded by this 
method. 

1.6 Confidence in Hand Calculations 

 
The analyst may be interested in how useful and practical hand calculations are when there are 

many comprehensive Monte Carlo and Deterministic codes available for criticality safety 
applications. In the example problems presented here, many have been verified using the following 
code packages and data: 

 
• MCNP5 
• SCALE5, Keno V.a 
• DANTSYS 
• Physical Dimensions 

 
Chapter 9 presents the results of this verification effort. The purpose for this effort is to demonstrate 
the usefulness and accuracy of the various hand calculation methods and assist the criticality safety 
practitioner choose the appropriate method for a particular problem. 
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2. One-Group and Modified One-Group Diffusion 
Theories 

2.1 What You Will Be Able to Do 

 
• Determine how to apply one-group diffusion theory to a simple fissile material system 

• Use one-group diffusion and modified one-group diffusion theory and compare differences 
between the two methods 

• Calculate the infinite multiplication factor, k∞, and critical dimensions for simple fissile 
systems 

• Interpret the results provided by one-group diffusion theory 

2.2 Overview of Diffusion Theory 

2.2.1 One-Group Diffusion Theory 

 
Rigorous derivations of the one-speed diffusion equation can be found in many textbooks 

(References 1 and 2). The focus of this discussion is on using the diffusion approximation to solve 
several example problems. The neutron flux in a critical system can be represented by the time 
dependent, one-speed diffusion approximation (Reference 2). 
 

  
!(!D"2#)! $

a
# +%$

f
# =

1

v

d#

dt
 

 
In this equation, φ is the one-group or single energy neutron flux (neutrons/cm2–sec), D is the one-

group diffusion coefficient (cm), Σa is the macroscopic absorption cross-section (cm–1), Σf is 
macroscopic fission cross-section (cm–1), ν is the number of neutrons emitted per fission (unitless), t is 
time (sec), v is the neutron speed (cm/sec) and ∇2φ is the Laplacian operating on the neutron flux.   

 
For a fissile system to maintain a fission chain reaction, the volume-to-mass ratio of fissile 

material must exceed a critical value that depends on system conditions.  The determination of 
critical size is based on a consideration of the conservation or balance of neutrons in the fissile 
system.  For a fissile system, neutrons are either produced (from an external source or fission 
reactions in the fissile material) or lost (either leakage from the system or absorption by the 
materials present in the system).  Thus, a neutron balance equation can be developed on the basis of 
these production and loss effects as follows. 

 
 
 
 
 
 
 
Therefore, for the one-group, time-dependent diffusion equation, the neutron balance can also be 

written in the following form where n represents the neutron density (neutrons/cm3). 
 

Net rate of gain 
of neutrons per 

unit volume 
– 

Rate of production of 
neutrons by fission 

per unit volume 
= 

Rate of loss of neutrons 
per unit volume by 

leakage and absorption 
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1

v

d!

dt
= "("D#2!)" $

a
! +%$

f
!

1

v

d!

dt
=

dn

dt
= –Leakage–Absorption + Production

 

 
The components of the one-speed, time dependent diffusion approximation, as illustrated in the 

neutron balance equation shown above, are explained below.   
 

–D∇2φ Represents the neutron leakage from the system.  The negative sign in front of this term in 
the diffusion equation indicates that there is a net loss of neutrons from the system 
(neutrons/cm3–sec). 

∑aφ Represents the loss of neutrons from the system due to absorption in the system.  The 
negative sign in front of this term in the diffusion equation indicates that there is a net loss 
of neutrons from the system (neutrons/cm3–sec). 

ν∑f φ Represents neutron production in the system due to fissions within the fissile material.  
This term is positive in the diffusion equation, which indicates that there is a net gain of 
neutrons in the system (neutrons/cm3–sec). 

Represents the rate of change of the neutron density in the system, which is equal to the        
sum of the terms listed above or the neutron balance for the system.  

 
For a steady-state fissile system in which the neutron population is constant, such as in a just-

critical system, the rate of change of the neutron population is zero or dn/dt = 0.  Thus, the one-speed 
diffusion equation can be written as 

 

  

!(!D"2#)! $
a
# +%$

f
# = 0,

or if written as the neutron balance and setting 
1

v

dn

dt
= 0,

!Leakage ! Absorption + Production =  0. 

If the diffusion equation is rearranged slightly, then

%$
f
# = (!D"2#)+ $

a
#

Dividing both sides of this equation by D and combining terms results in the following expression

"2# +

%$
f
! $

a

D

&

'
((

)

*
++

 # = 0.

 

 

  

1

v

d!

dt
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Note that this is in the form !2" + B2  " = 0, where B2  is equal to a constant,

B2
= constant =

#$
f
% $

a

D

&

'
((

)

*
++

.

 

 
The term, B2, in this form is a function of only the material properties of the system.  Note that no 

geometric dependencies are present. Thus, changes in the material properties of the system will 
affect, B2, whereas a change in the geometry of the system will not. For this reason, B2, as defined 
above, is known as the material buckling. It describes the curvature of the flux and is based only on 
material properties.   

 
For a one-dimensional slab (1-D), for example, the steady state diffusion equation can then be 

solved.   
 

  

Recall from before that !2" + B2" = 0 where B2  is equal to a constant:

B2
= constant =

#$
f
% $

a

D

&

'
((

)

*
++

Knowing that !2" =
d2"
dx2

&

'
(

)

*
+ , the diffusion equation for a one-dimensional slab

with thickness, x, can be rewritten as

d2"
dx2

+ B2" = 0 

and has a solution, " x( )=  A cos Bx +C sin Bx.

 

 
A complete solution for the 1-D slab can be found by considering the possible boundary conditions 

for the system:  
 

  

1. The flux is finite and real,

2. The current and flux are continuous at the system boundaries,

3. 
d!

dx
x=centerline

= 0  (symmetry condition), and

4. !(x)
x=outside edge

= 0.

We need two boundary conditions for the 1-D slab, 3 and 4, to obtain a complete solution to this problem.

Figure 1 will assist with completing the solution to the 1-D slab example.
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Figure 1. Neutron Flux Profile for the 1-D Slab, One-Group Diffusion Theory 

Approximation 
 
Appendix A provides an in-depth discussion of the linear extrapolation distance. On the basis of 

this discussion of extrapolation distance and vacuum boundary conditions, the following relationship 
can be defined; it states where the mathematical representation of the neutron flux is zero. 

 
  

� 

! X = X + d , 
 

where 
 
X = one-half of the slab thickness and 

d = 2D or 0.71λtr, as defined and discussed in Appendix A. 

Thus, the neutron flux vanishes at the extrapolated boundary, which lies approximately 0.71λtr 
beyond the physical boundary. To take advantage of symmetry, consider the center of the slab to be 
at x = 0. Thus, the boundary conditions can then be used to find the diffusion theory solution. 

  

The boundary condition is expressed as 
d!

dx
x=centerline

= 0  (symmetry condition).  Thus, 

!(x) = A cos Bx +C sin Bx;  then 
d!

dx
= –AB sin Bx +CB cos Bx  at x = 0:

–AB sin 0 +CB cos(0) = 0

0 +CB(1) = 0.

Thus, C = 0.  The flux equation can then be written as follows, based on the result of applying the first 

boundary condition, #3.

!(x) = A cos Bx.

 

X 

d Center 
Line 

d 
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Now, the boundary condition, #4, can be applied to this system to complete the solution for the 1-
D slab. This boundary condition is used to determine the value for B. 

  

The boundary condition is expressed as !( "X ) = 0, so that A cos B "X = 0.

Now cos B "X = 0 whenever B "X =
n#
2

. 

B is the last variable left in this equation, so solve for B:  B =
n#
2 "X

.

Usually, the fundamental mode (n =1) is the case of most interest.  Thus, B can be rewritten as

B =
#

2 "X
, where, from Figure 1, "X = X + d,

B =
#

2X + 2d
=

#
d + 2X + d

.

Thus, !(x) = A cos
#x

2 "X

$

%&
'

()
.

 

The remaining variable to determine is the value for A. A is the amplitude of the flux and depends 
on the power of the fissile system. Until the power of the system is specified or known, A remains 
undetermined. Note that B determines the flux shape or frequency for the system. 

At this point, it appears that we have problem because two different values for B2 have been 

defined. 

  

B
m

2
=

!"
f
# "

a

D

$

%
&
&

'

(
)
)

 and B
g

2
=

*
2 +X

$

%&
'

()

2

 

These values for B2 are not incorrect. The first definition is known as the material bucking, Bm2, 
and is dependent on the materials in the system. The second definition is known as the geometrical 
buckling, Bg2, and is only dependent upon the geometrical properties of the system. 

If the geometric buckling, Bg2, is the solution to the steady state diffusion equation, the definition 
can only apply when the multiplication factor for the system is 1 (critical). The material buckling, 
Bm2, is independent of the multiplication factor; however, if the material buckling is just equal to the 
geometric buckling, then the system must be critical. This is because the geometric buckling, as 
defined above, is only applicable to a critical system. Thus, when Bm2 = Bg2, the multiplication factor 
is equal to 1, which is a critical system. It is noteworthy that the relationship between the geometric 
and material bucklings can be used to identify subcritical and supercritical systems as follows.  

  

As previously stated,

B
m

2
= B

g

2   then k =1   (Critical),

B
m

2
> B

g

2   then k >1   (Supercritical),

B
m

2
< B

g

2   then k <1   (Subcritical).
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In other words, within a fixed fissile material geometry, the geometric buckling is constrained. If 
more fissile material is present than will fill the geometry, the material buckling exceeds the 
geometric buckling and the system is supercritical. If there is less fissile material than needed to fill 
the geometry, the system is subcritical.   

It is interesting at this point to see how the effective multiplication factor changes with changes 
in neutron flux.  Recall the solution to the steady-state diffusion equation. When the rate of change 
in the neutron flux is positive (δφ/δt > 0), then the multiplication factor exceeds 1, which is indicative 
of a supercritical system. If the rate of change of the neutron flux is negative (δφ/δt < 0), then the 
multiplication factor is less than 1, which is indicative of a subcritical system. If the rate of change of 
the neutron flux is zero (δφ/δt = 0), then the system is at a critical condition, which indicates the 
neutron population is constant and unchanging as a function of time. 

If a change to the multiplication factor of a system is desired, then either the material or 
geometric properties of the system can be changed. Thus, the physical impacts of the material and 
geometric bucklings can be reviewed.   

• Material Buckling (Bm2) — the material buckling is primarily a function of the absorption 
and fission cross-sections of a region. Once the moderator is specified, then the diffusion 
coefficient (D) remains effectively constant even if the quantity of the moderator or fuel is 
changed. 

• Geometric Buckling (Bg2) — the geometric buckling affects only the leakage of a system.  
Changing the geometrical properties of a system increases or decreases the neutron 
leakage. 

Thus, a change in the neutron density of a system is equal to the difference of production and 
losses (absorption and leakage) from the system.   

Change in the Neutron Density = Production – Absorption – Leakage 

or 

Change in the Neutron Density = Function of (ΔBm2, ΔBg2) 
 

2.2.2 Correction for Thermal Systems in One-Group Diffusion Theory 

For the discussion about modified one-group diffusion theory, it is beneficial to discuss the 
difference between the effective multiplication factor (keff) and the infinite multiplication factor (k∞). 
The keff is the multiplication factor of a finite system and considers neutron leakage, neutron 
absorption, and neutron production. The k∞ is the infinite multiplication factor, which assumes no 
neutron losses caused by leakage from the system because a neutron cannot leave a system that is 
infinite in extent. Thus, the production term in the neutron diffusion equation, υΣf, can be written as 
follows: 

  

� 

!" f = k
#
"a . 

This relationship can be derived from the four-factor formula as follows:   
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k
!
= "#pf ,

"f =

$%
f

Fuel

%
a

Fuel
&

%
a

Fuel

%
a

System
=

$%
f

Fuel

%
a

System
,

 

The terms ε and p are correction factors to account for: 

ε — the increase in the number of fissions in the system caused by fast fission occurring in a thermal 
system, and 

p — the decrease in the neutrons available in the system for thermal fissions caused by absorptions 
in the resonance region while neutrons are slowing down. 

Thus, ε and p allow for a one-group equation to be generated with correction factors to consider 
two-group effects.  In reality, the production term in the one-group diffusion equation should be 
written with these terms present; however, these terms are usually assumed to be about equal to 1.0 
for a thermal system. 

  

� 

!p"# f = k
$
#a . 

Thus, the “corrected” diffusion equation can be written as follows for a finite system: 

  

1

v

d!

dt
= k

"
#

a
! $ #

a
! $ ($D%2!)

This equation can be simpified as follows and is known as the modified steady-state diffusion 

equation. Recall that the time rate of change of the neutron flux for a steady-state system is zero 

(i.e., the neutron population in the system is constant). Therefore,

1

v

d!

dt
= #

a
(k

"
$1)! + D%2! = 0    or

%2! +
#

a

D
(k

"
$1)! = 0.

 

In this equation, Σa/D (cm–2) is equal to 1/L2 where L is the neutron diffusion length. The 
modified one-group diffusion theory equation can now be rewritten: 

  

L
g
=

D

!
a

.

Substituting this into the modified one-group diffusion equation, for a steady-state system, yields

"2# +
(k

$
%1)

L2
# = 0    or    "2# + B

m

2# = 0,

where   B
m

2
=

(k
$
%1)

L2
.
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This equation can be rearranged as follows:

1 + B
m

2
L

2
= k

!
    or    1 =

k
!

1 + B
m

2
L

2
.

 

Now, the general equation for a critical condition can be written as follows to determine the 
nonleakage probability expressions for a critical system: 

  

k
!
P

L
=1,

where P
L
 is the nonleakage probability; therefore, if

k
!
P

L
=1 =

k
!

1 + B
m

2 L2
  

then the nonleakage probability is

P
L
=

1

1 + B
m

2 L2
.

For a critical system, recall that B
m

2
= B

g

2; therefore, the nonleakage probability can be written

P
L
=

1

1 + B
g

2L
g

2
.

 

2.2.3 Modified One-Group Diffusion Theory 

Even corrected for fast fission and resonance absorption, one-group diffusion theory still does not 
consider moderation for thermal systems. In particular, the process of moderation requires some 
distance for the neutrons to travel while slowing down. In the process of moderation, some neutrons 
may leak from the system. To account for these effects, one-group diffusion theory is modified by 
considering the neutron slowing down distance and non-thermal leakage. 

The parameter typically used to account for slowing down is τ, known as the neutron age (cm2). 
When incorporated in the non-thermal non-leakage probability, the neutron age accounts for both 
the distance required to moderate the neutrons and the leakage of neutrons during moderation. 

  

    Using ! , the non-thermal or fast non-leakage probability, P
f
, is defined as:

P
f
=

1

1 + B
m

2
!

  

then the six-factor formula for a critical system in modified one-group diffusion theory is

k
"

P
th

P
f
=1 or    #$ pf P

th
P

f
=1.

where P
th
=

1

1 + B
m

2 L
th

2
is the thermal non-leakage probability.

 



12 

If the expressions for the nonleakage probabilities are written out, then the six-factor formula 
becomes: 

  

k
!

1 + B
g

2
"( ) 1 + B

g

2L
th

2( )
= 1                 where  L

th

2
=

D
th

#
a

th

Now if the fourth order term in B
g
 is ignored, then

k
!

1 + B
g

2
" + L

th

2( )( )
= 1    or  

k
!

1 + B
g

2 M 2( )
= 1

where M 2 
=  " + L2, is the migration area.

 

This is the expression for a critical system in modified one-group diffusion theory. 
 

2.3 Applicability of One-Group Diffusion Theory 

 
The one-group diffusion theory method is applicable for fissile material systems with the following 

characteristics and assumptions. 
 

• All neutrons in the system must have the same energy or velocity (this approximation is 
more valid for fast, but not thermal, systems). 

• It is assumed that neutrons that collide with nuclei in the system do not lose energy and 
only their direction of movement changes. 

• The medium in which the neutrons are diffusing is homogeneous. 

• Neutron scattering is isotropic, meaning that neutrons that scatter will do so in all 
directions. 

• A “close-fitting” neutron reflector does not surround the fissile material. 

• The medium in which the neutrons are diffusing is weakly absorbing.  

• The neutron flux is a slowly varying function of position in the system, a characteristic 
which is true at points in the system that are at least a few mean free paths from the 
system boundaries. 

2.4 Applicability of Modified One-Group Diffusion Theory 

 
The modified one-group diffusion approximation has the same applicability and limitations as the 

one-group diffusion approximation; however, this method can best be used for homogeneous systems 
that contain moderating materials.   

2.5 Example Problems 

 
The example problems for one-group and modified one-group diffusion theories will illustrate how 

they can be applied to simple systems to determine the characteristics for the system. Each method 
will be compared with one another to show the usefulness and limitations of the methods for various 
systems.   
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2.5.1 Diffusion Theory Example Problem 1 

 
Assume a slab tank (Figure 2) contains a mixture of water and pure plutonium-239 
(239Pu) with a 239Pu concentration of 100 grams per liter at 20 °C. 
 
Using the data in Table 3, determine the following for this particular system to support the 
design for a slab tank that will contain a pure 239Pu solution. 

 

1. The infinite multiplication factor, k∞. 

2. The critical slab thickness using one-group diffusion theory. 

3. The critical slab thickness for this problem using modified one-group diffusion 
theory. 

 

 
 
Figure 2. Slab Tank Containing a 239Pu Metal-Water Mixture for Diffusion Theory 

Example Problem 1 
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Table 3.  Diffusion Theory Example Problem 1 Data 

 
 Constituent Parameter Data Value Reference 

σa(2200 m/s) 1011.3 barns 2, Table II.2, pg. 643 
σf(2200 m/s) 742.5 barns 2, Table II.2, pg. 643 
ν 2.871 2, Table 3.4, pg. 70 
ga (non-1/v factor) 
for 20 °C 1.0723 2, Table 3.2, pg. 63 

239Pu 

gf (non-1/v factor) 
for 20 °C 

1.0487 2, Table 3.2, pg. 63 

Hydrogen 
σa (2200 m/s) 0.332 b 2, Table II.2, pg. 643 

Oxygen 
σa (2200 m/s) 0.28 mb 2, Table II.2, pg. 643 

Water 
σa (2200 m/s) 0.6643 b = 2x0.332 b + 0.28x10-3 b 

τ 27 cm2 2, Table 5.3, pg. 215 
D 0.16 cm 2, Table 5.2, pg. 210 

 
Dmixture= Dwater 

 

Water 

τmixture= τwater 

The slab tank will contain mostly 
water with small quantities of 
239Pu.  Therefore, the diffusion 
coefficient and neutron age will be 
approximately that of water. 

 
Part 1.  Because 239Pu is a non-1/v absorber in a thermal system, the absorption microscopic 
cross section must be adjusted using the ga and gf factors as listed in Table 3. The non-1/v 
factors are used to adjust the microscopic absorption cross sections for various cross sections 
that typically have high absorption cross sections. The absorption rate of thermal neutrons 
with 239Pu varies as a function of the temperature of the system. 
 
Thus, the absorption and fission microscopic cross sections in barns for 239Pu and water are 
adjusted as follows. 
 

  

For 
239

Pu,

!
a
=

"

2
g

a
!

a
2200( ) = 0.886 #1.0723 #1011.3 = 961 b,

!
f
=

"

2
g

f
!

f
2200( ) = 0.886 #1.0487 #742.5 = 690 b.
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For Water (H
2
O), the cross-section adjustment for hydrogen is expressed as

!
a(hyd )

=
"

2
g

a
!

a(hyd )
2200( ) = 0.886 #1.0 # 0.332 b = 0.294 b

and for oxygen it is expressed as

!
a(oxy )

=
"

2
g

a
!

a(oxy )
2200( ) = 0.886 #1.0 # 0.28 $10%3  b = 2.5x10%4  b.

The total for water (H
2
O) is 

!
a(water )

= 2# !
a(hyd )

+!
a(oxy )

= 2# 0.294 b + 2.5 $10%4  b= 0.588 b.

 

 
To calculate the macroscopic cross sections, the next step is to calculate the atom densities 
for 239Pu and water; knowing the density of 239Pu, ρ, Avogadro's number, NA, and the atomic 
weight of 239Pu. References 3 and 4 contain further information about calculating atom 
densities for various materials and compositions. 
 

  

N
Pu

=
! g / cm3

" N
A

 atoms # cm2 mol # b

A
Pu239

 g / mol

A
Pu239

= 239.10 g / mol

N
Pu

=
(0.1 g / cm3 )(0.6022 atoms # cm2 mol # b)

239.10 g / mol
= 2.52x10#4  atoms / b - cm

 

 
Now that the 239Pu atom density is known, calculate the volume fraction for 239Pu and water 
to determine the atom density for water. 
 

  

vf
239Pu

=
Concentration

Theoretical  Density
=

0.1 g / cm3

19.75 g / cm3
= 0.005 or 0.5%

vf
Water

=1 ! vf ( 239Pu) =1 ! 0.005 =  0.995 or 99.5%

"
H2O

=1.0 
g

cm3

N
A
= 0.6022 

atoms - cm2

mol -b

A
H2O

= 2*1.0079 g / mol +15.9994 g / mol =18.015 
g

mol

N
Water

=
vf

Water
# "

Water
 g/cm3

# N
A

 atoms - cm2 mol -b

A
H2O

 g / mol

N
Water

=
0.995 #1.0 g/cm3

# 0.6022 atoms - cm2 mol -b

18.015 g / mol
= 3.326x10!2  

atoms

b - cm
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The macroscopic absorption and fission cross-sections can now be determined for 239Pu.  
References 1 and 2 provide good background information about calculating macroscopic cross 
sections. 
 

  

!
f

Pu
= N

Pu
" #

f
=  2.52x10$4  atoms / b - cm " 690 b =  0.1739 cm–1

!
a

Pu
= N

Pu
" #

a
=  2.52x10$4  atoms / b - cm " 961 b =  0.2422 cm–1

!
a

water
= N

water
" #

a(water )
=  3.326x10$2  atoms / b - cm " 0.588 b =  0.0196 cm–1

%   !
a

mixture
= !

a

Pu
+ !

a

water
=  0.2422 cm–1  +  0.0196 cm–1  =  0.2618 cm–1

 

 
Next, η, the number of neutrons released in fission per neutron absorbed by a fissile nucleus 
and f, the thermal utilization factor, can be calculated. 
 

  

! =

"
f

Pu
#$

"
a

Pu
=  

0.1739 # 2.871

0.2422
= 2.061,

f =
"

a

Pu

"
a

mixture
=  

0.2422

0.2618
= 0.925.

 

 
Because no fertile material is present (i.e., no 240Pu or 238U), no corrections are needed for 
resonance absorption or fast fission, so k∞ = ηf, which is equal to the following: 
 

  
k
!
= " f =  2.061 # 0.925 =1.906.  

 
This result for k∞ means that a criticality is possible for this 239Pu and water system at the 
stated concentration. 
 
With the information provided above, one could determine the concentration required to 
result in a k∞ that is less than 1.0, which would provide the “always safe” concentration for 
an infinite 239Pu-water mixture. Setting up this methodology in a spreadsheet and using the 
“goal seek” capability provides an answer of 7.66 g Pu per liter  (or 0.00766 g Pu/cm3) for an 
infinite critical system, k∞ = 1. 
 
Part 2.  The first step to calculate the critical slab thickness using one-group diffusion theory 
is to determine the diffusion length, L2, and use the result to determine the value for the 
critical slab height. 
 

  

L
2
=

D

!
a

mixture
=  

0.16 cm

0.2618 cm
–1

= 0.611 cm
2
, 

B
2
=

k
"
#1

L
2

=
1.906 #1

0.611 cm
2
=1.483 cm

–2
.

 

 
From Reference 2, Table 6.2, the buckling for an infinite slab with a thickness “a” is B2 = 
(π/ã)2, where ã includes the extrapolation distance. Now that the buckling for this problem is 
known, the critical slab extrapolated thickness can be determined. 
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B
2
=

!
!a

"

#$
%

&'

2

,

!a =
! 2

B
2
=

! 2

1.483 cm
-2
= 2.58 cm.

 

 
This dimension must be corrected by subtracting the extrapolation distance, d. See Appendix 
A for an overview on extrapolation distance. For this slab and various materials present, d = 
2.13D.   
 

  
a = a ! 2d = a ! 2 2.13 "D( ) = 2.58 cm ! 2 2.13 # 0.16 cm( ) =  1.90 cm . 

 
Figure 3 shows that the critical slab thickness for this system, a Pu(0) metal-water mixture 
and a concentration of 0.1 g/cm3 (100 gPu/l), is about 5.6 in. (14.2 cm). This result shows that 
simple one-group diffusion theory does not accurately estimate the critical dimensions for the 
239Pu-water slab tank. Perhaps modified one-group diffusion theory will provide more 
effective results. 

 
Part 3.  For modified one-group diffusion theory, the thermal migration area, M2, needs to be 
calculated by calculating the sum of L2 (neutron diffusion area) and τ (neutron age). Then the 
critical slab height can be determined as follows: 
 

  

B
2
=

k
!
"1

M
2

=
k
!
"1

L
2
+ #

=
1.906 "1

0.611 + 27
= 0.03281 cm

–2 ,

 

a =
$

2

B
2
=

$
2

0.03281 cm
–2

=17.34 cm,

Based on Figure 9 data, the extrapolation distance for this type of system is about 2.15 cm.

a = a " 2 2.13D( ) =17.34 cm – 2 2.15 cm( ) =13.04 cm.

 

 
Note that for thermal systems (particularly those containing water), the extrapolation 
distance is usually around 2 cm. It is best to use figures such as Figure 9 to determine the 
extrapolation distance for such systems. 
 
Based on this result, a 239Pu-water mixture will result in a subcritical configuration if the 
“infinite” slab tank thickness is less than about 17.34 cm. This result compares well with the 
infinite slab thickness for a Pu(0) metal-water mixture shown in Figure 3. This data shows 
that a Pu(0) metal-water mixture at a concentration of 0.1 g/cm3 (100 gPu/l) has a critical 
thickness of about 5.6 in. (14.2 cm), which is consistent with the answer. 

 
Modified one-group diffusion theory can be used effectively for moderated, thermal problems. 
Based on the results presented in this example problem, it is recommended that 
only modified one-group diffusion theory be used for problems similar to this 
example, as one-group diffusion theory does not consider the effects of 
moderation. 
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Figure 3. Critical Infinite Slab Thickness for a Pu Metal-Water Mixture 

(Reference 5, Figure III.A.5-2) 
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2.5.2 Diffusion Theory Example Problem 2 

 
It is proposed to store water solutions of uranyl sulfate (UO2SO4) with a 
concentration of 30 g 235U/l (0.03 g/cm3) of the sulfate. Assume the temperature of 
the solution is 20°C, and the uranium is fully enriched (i.e., no 238U is present). 
Table 4 lists the relevant data for this problem.   
 
1. Is this configuration safe when using a tank of unspecified size and shape?   

2. If not, calculate the critical cylindrical tank radius using modified one-group diffusion 
theory.   

3. Repeat (2) as if the enrichment were 14.7 weight percent 235U instead of fully enriched 
235U. 

 
Table 4. Diffusion Theory Example Problem 2 Data 

 
Constituent Parameter Data Value Reference 

σa(2200 m/s) 680.8 barns 2, Table II.2, pg. 643 
σf(2200 m/s) 582.2 barns 2, Table II.2, pg. 643 
ν 2.418 2, Table 3.4, pg. 70 
ga (non-1/v 
factor) for 20°C 0.9780 2, Table 3.2, pg. 63 

235U 

gf (non-1/v 
factor) for 20°C 0.9759 2, Table 3.2, pg. 63 

O in UO2SO4 σa(2200 m/s) 0.28 mb 6 

S in UO2SO4 σa(2200 m/s) 0.52 b 6 

Hydrogen 
σa (2200 m/s) 0.332 b 6 

Oxygen 
σa (2200 m/s) 

0.28 mb 6 

Water 
σa (2200 m/s) 0.6643 b = 2 x 0.332 b + 0.28x10-3 b 

τ 27 cm2 2, Table 5.3, pg. 215 
D 0.16 cm 2, Table 5.2, pg. 210 

Dmixture = Dwater 

 

Water 

τmixture = τwater 

The tank will contain 
mostly water with small 
quantities of 235U.  
Therefore, the diffusion 
coefficient and neutron 
age will be approximately 
that of water. 
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Part 1.  Because the tank dimensions are not specified in the problem, one must assume that 
it is effectively infinite in size. Hence, we must calculate the infinite multiplication factor, k∞.  
If the k∞ has a value less than 1.0, the system will remain subcritical at the assumed 
concentration.   
 
As stated in Section 2.5.1, because 235U is a non-1/v absorber, the absorption microscopic 
cross section must also be adjusted using the ga and gf factors as listed in Table 4. Thus, the 
absorption and fission microscopic cross sections in barns for 235U are adjusted as follows. 
 

  

!
a
=

"

2
g

a
!

a
2200( ) = 0.886 # 0.978 # 680.8 = 590 b

!
f
=

"

2
g

f
!

f
2200( ) = 0.886 # 0.9759 # 582.2 = 503 b.

For sulfur,

!
a
=

"

2
g

a
!

a
2200( ) = 0.886 #1.0 # 0.52 = 0.461 b,

For Water (H
2
O), the cross-section adjustment is expressed as

!
a(H

2
O )

=
"

2
g

a
!

a(H
2
O )

2200( ) = 0.886 #1.0 # 0.6643 b = 0.588 b

and for oxygen in uranyl sufate, it is expressed as

!
a(oxy )

=
"

2
g

a
!

a(oxy )
2200( ) = 0.886 #1.0 # 0.28 $10%3  b = 2.5x10%4  b.

 

 
The next step is to calculate the atom densities for 235U and water, to calculate the 
macroscopic cross sections. Note that the uranium in the solution is fully enriched (100% 
235U) and does not contain any 238U. 
 

  

N
235U

=
(C

U-235
 g / cm3 )(N

A
 atoms – cm2 mol – b)

(A
U!235

 g / mol)

N
235U

=
(0.03 g / cm3 )(0.6022 atoms – cm2 mol – b)

(235.04 g / mol)
= 7.69 "10!5  atoms / b – cm

N
235U

= N
UO

2
SO

4

= 7.69 "10!5  atoms / b - cm

N
O
= 6 " N

235U
= N

UO
2
SO

4

= 6 " (7.69 "10!5  atoms / b – cm)=4.614 "10!4  atoms / b – cm

N
S
= N

235U
= 7.69 "10!5  atoms / b – cm

 

 
Now that the 235U atom density is known, calculate the volume fractions for 235U and water 
to determine the atom density for water: 
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vf
235U

=
Concentration

Theoretical Density
=

0.03 g/cm3

18.9 g/cm3
= 0.0016 or 0.16%

vf
H2O

=1 ! vf ( 235U ) =1 ! 0.0016 =  0.9984 or 99.84%

N
H2O

=
vf

H2O
" #

H2O
 g/cm3 " N

A
 atoms-cm2 mol ! b

A
H2O

 g/mol

N
H2O

=
0.9984 "1.0 g/cm3 " 0.6022 atoms-cm2 mol ! b

18.015 g/mol

N
H2O

= 3.337 "10!2  
atoms

b ! cm

$
a

H2O
=

%

2
" N

H2O
" &

a
H 2O

= 3.337 "10!2  
atoms

b ! cm
" 0.588 b = 0.0196 cm–1.

 

 
The macroscopic absorption and fission cross-sections can now be determined for 235U.   
 

  

!
a

235U
= N

235U
" #

a
=  7.69 "10

$5
 atoms/b-cm " 590 b =  0.04537 cm

–1

!
f

235U
= N

235U
" #

f
=  7.69 "10

$5
 atoms/b-cm " 503 b =  0.03868 cm

–1

!
a

H2O
= 0.0196 cm

–1

!
a

S  in UO
2
SO

4 = N
S
" #

a
=  7.69 "10

$5
 atoms/b-cm " 0.461 b =  3.545 "10

–5
 cm

–1

!
a

O  in UO
2
SO

4 = N
O
" #

a
=  4.612"10

$4
 atoms/b-cm " 2.48x10

$4
 b =  1.1 "10

–7
 cm

–1

%   !
a

mixture
= !

a

235U
+ !

a

H2O
+ !

a

S
+ !

a

O

!
a

mixture
= 0.04537 cm

–1
 +  0.0196 cm

–1
 +3.545 "10

–5
 cm

–1
+1.14 "10

–7
 cm

–1

!
a

mixture
=  0.06501 cm

–1
.

 

 
Next, η, the number of neutrons released in fission per neutron absorbed by a fissile nucleus 
and f, the thermal utilization factor, can be calculated: 

 

  

! =

"
f

235U
#$

"
a

235U
=  

0.03868 # 2.418

0.04537
= 2.061

 

f =
"

a

235U

"
a

mixture
=  

0.04537

0.06501
= 0.6979.

 

 
Because no 238U is present, the fast fission factor, ε, is equal to 1. In addition, it can be 
assumed that the resonance escape probability is equal to 1 because the only resonance 
material is 235U and neutron absorption and fission in the resonance region essentially cancel 
each other out. Thus, the infinite multiplication factor is then k∞ = ηf. 



22 

 

  
k
!
= " f =  2.061 # 0.6979 =1.438.  

 
Based on the result of this calculation, a tank with infinite dimensions at this concentration 
of uranyl sulfate solution would not be safe. Again, a concentration search can be done in a 
spreadsheet program to search on the concentration required to result in k∞ = 1. 
 
Part 2.  As this is a thermal system, a one-group analysis is not appropriate so a modified 
one-group analysis is done. For modified one-group diffusion theory, the following results can 
be obtained. For this part the thermal migration area, M2, needs to be calculated as the sum 
of L2 (neutron diffusion length) and τ (neutron age). Then the critical infinite cylinder radius 
can be determined as follows. 
 

  

L
th

2
=

D

!
a

=
0.16 cm

0.06501 cm
-1
=2.461 cm

2

B
m

2
=

k
"
#1

M
2

=
k
"
#1

L
2
+ $

=
1.438 #1

2.461 + 27
= 0.01487 cm

–2
 

R =
2.405

2

B
m

2
=

2.405
2

0.01487 cm
–2

=19.7 cm

R = R # d =19.7 cm – 2.2 cm =17.5 cm

 

 
An MCNP1 calculation was performed to determine the radius for a critical, infinite cylinder 
of this material, which resulted in a cylinder radius of approximately 17.25 cm. Modified one-
group diffusion theory provides a reasonable estimate of the critical dimensions for this 
moderated, thermal system. As demonstrated in the last example problem, one-group 
diffusion theory significantly underestimates the critical dimensions of moderated systems 
and should only be used for fast, unmoderated systems.   
 
Part 3.  Significantly reducing the enrichment from fully enriched 235U (i.e., 100% 235U) to 
14.7 weight percent 235U involves a corresponding increase in the quantity of 238U in the 
system.  The increased quantity of 238U in the system (100 – 14.7 = 85.3 weight percent) will 
reduce the reactivity of the system compared with Part 2, because there is significant 
resonance absorption occurring in the 238U. Thus, fewer fissile atoms are present and the 
quantity of neutron absorbing nuclides in the system is larger.   
 
First, the atom densities need to be modified to reflect the presence of 238U. The Table 5 
provides the data required for this part of the problem. 
 

                                                        
 
1 A General Monte Carlo N-Particle (MCNP) transport code. 
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Table 5. Diffusion Theory Example Problem 2 Data for Part 3 
 

Constituent Parameter 
Data 
Value 

Reference 

σa(2200 m/s) 2.7 b 2, Table II.2, pg. 643 

σs(2200 m/s) 9.38 b 
6, 2200 m/s elastic scattering 
cross section from ENDF/B-
VI data 

238U 

ga (non-1/v factor) 
for 20 °C 1.0017 2, Table 3.2, pg. 63 

σa(2200 m/s) 680.8 b 2, Table 3.2, pg. 63 
σf(2200 m/s) 582.2 b 2, Table 3.2, pg. 63 

σs(2200 m/s) 15.48 b 
6, 2200 m/s elastic scattering 
cross section from ENDF/B-
VI data. 

ν 2.418 2, Table 3.4, pg. 70 
ga (non-1/v factor) 
for 20 °C 0.9780 2, Table 3.2, pg. 63 

235U 

gf (non-1/v factor) 
for 20 °C 0.9759 2, Table 3.2, pg. 63 

σa(2200 m/s) 0.28 mb 
6, 2200 m/s elastic scattering 
cross section from ENDF/B-
VI data. O in UO2SO4 

σs(2200 m/s) 3.76 b 2, Table II.3 pg. 645 

σa(2200 m/s) 0.52 b 
6, 2200 m/s elastic scattering 
cross section from ENDF/B-
VI data. S in UO2SO4 

σs(2200 m/s) 0.975 b 2, Table II.3 pg. 646 

Hydrogen 
σa (2200 m/s) 0.332 b 

6, 2200 m/s elastic scattering 
cross section from ENDF/B-
VI data. 

Oxygen 
σa (2200 m/s) 0.28 mb 

6, 2200 m/s elastic scattering 
cross section from ENDF/B-
VI data. 

Water 
σa (2200 m/s) 0.6643 b = 2 ! 0.332 b + 0.28 ! 10-3 b 

Water 

Water 
σs (2200 m/s) 103.0 2, Table II.3 pg. 647 

 
Now, as in the last part of this problem, the atom densities need to be calculated to consider 
the effects of the 238U in the system. First, the absorption cross section must be adjusted as 
before for 235U because 238U is a non-1/v absorber: 
 

  
!

a(U"238)
=

#

2
g

a
!

a
2200( ) = 0.886 $1.0017 $ 2.7 = 2.40 b  

 
The atom density for 235U remain unchanged as the concentration of 235U remains the same. 
The concentration of 238U is based on the atom density of uranium. 
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N
235U

= 7.69 !10"5  atoms / b - cm

The concentration term, above, can be adjusted by dividing through by the

enrichment, which is equal to 14.7 wt. % 235U in U:

C
U
=

C
U"235

0.147
=

0.03 g / cm3

0.147
= 0.204 g -U / cm3

A =
wf

1

A
1

+
wf

2

A
2

#

$
%

&

'
(

"1

=
0.147

235.04
+

.853

238.05

#

$%
&

'(

"1

=237.60 g -U(14.7) / mole

N
U
=

(C
U

 g / cm3 )(N
A

 atoms – cm2 mol – b)

(A
U

 g / mol)

N
238U

=
(0.204 g / cm3 )(0.6022 atoms – cm2 mol – b)

(237.60 g / mol)
= 5.170 !10"4  atoms / b – cm

N
238U

= N
U
" N

235U
= 5.170 !10"4  atoms / b – cm " 7.69 !10"5  atoms / b – cm 

N
238U

= 4.401 !10"4  atoms / b – cm

N
O
= 6 ! N

U
= N

UO
2
SO

4

= 6 ! (5.170 !10"4  atoms / b – cm) = 3.102!10"3  atoms / b – cm

N
S
= N

U
= 5.170 !10"4  atoms / b – cm.

 

 
The atom densities have changed significantly compared with Part 2 of the problem because 
of the addition of 238U to the system. Thus, because the macroscopic cross sections are 
dependent on the atom densities, they need to be recalculated. Recall that the concentration 
needed for the following calculations must allow for the total uranium content in the system, 
not only the 235U content. The macroscopic absorption cross-section for water is calculated as 
follows. 
 

  

vf
U
=

Concentration

Theoretical Density
=

(0.204) g / cm3

18.9 g / cm3
= 0.0108 or 1.08%

vf
H2O

=1 ! vf (U ) =1 ! 0.0108 =  0.9892 or 98.92%

N
H2O

=
vf

H2O
" #

H2O
 g/cm3

" N
A

 atoms - cm2 mol -b

A
H2O

 g / mol

N
H2O

=
0.9892"1.0 g / cm3

" 0.6022 atoms - cm2 mol -b

18.0152 g / mol

N
H2O

= 3.3066 "10!2  
atoms

b - cm
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!
a

H 2O

= N
H2O

" #
a

H 2O

= 3.3066 "10
$2

 
atoms

b - cm
" 0.588 b = 0.01944 cm–1

!
f

235U
= N

235U
" #

f
=  7.69 "10

$5
 
atoms

b - cm
" 503 b =  0.03868 cm–1

!
a

235U
= N

235U
" #

a
=  7.69 "10

$5
 
atoms

b - cm
" 590 b =  0.04537 cm–1

!
a

238U
= N

238U
" #

a
=  4.401 "10

$4
 
atoms

b - cm
" 2.40 b =  0.001056 cm–1

!
a

S  in UO
2
SO

4 = N
S
" #

a
=  5.170 "10

$4
 
atoms

b - cm
" 0.461 b =  2.383 "10

$4
 cm–1

!
a

O  in UO
2
SO

4 = N
O
" #

a
=  3.102"10

$3
 
atoms

b - cm
" 2.48 "10

–4
 b =  7.7 "10

–7
 cm–1

%   !
a

UO
2
SO

4 = !
a

235U
+ !

a

238U
+ !

a

S
+ !

a

O

!
a

UO
2
SO

4 = 0.04537 cm–1
 +  0.001056 cm–1

 + 2.383 "10
$4

 cm–1
+7.7 "10

–7
 cm–1

= 0.04666cm$1

%   !
a

mixture
= !

a

UO
2
SO

4 + !
a

H2O

!
a

mixture
= 0.04666 cm–1

 + 0.01944 cm–1
=0.06610 cm$1

.

 

 
Next, η, the number of neutrons released in fission per neutron absorbed by a fissile nucleus 
and f, the thermal utilization factor, can be calculated for this system. The macroscopic 
fission cross-section for 238U is very small and can be neglected in this calculation: 
 

! !
"

#$ + #$ # +
= = =

$

$
= = =
$

235 238

2 4

2 4

2.418 0.03868 0
 2.004

0.04666

 

0.04666
 0.706.
0.06611

U U

f f

UO SO

a

UO SO

a

mixture

a

f

 

 
Because this system with lower enrichment contains significant quantities of 238U, the 
resonance escape probability needs to be calculated. The resonance escape probability is the 
probability that a neutron will escape being captured by the material resonances as it slows 
down from fast to thermal energies. In this case, the resonances in the absorption cross-
section for 238U will make fewer neutrons available for subsequent fissions and reduce the 
system reactivity. 
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First, calculate the mean lethargy gain per neutron collision, !, for the moderator and fuel 

mixture present in this system. From Reference 1, pg. 324, !  is defined as follows:

! =1-
(A -1)2

2A
ln

A +1

A "1

#

$
%

&

'
(

For an atomic weight, A, greater than 10 (A>10) the following approximation can be used:

! )
2

A +
2

3

 for  A >10.

We need to calculate !  for the mixture of moderator and fuel.

For hydrogen (A = 1): !
H
=1 –

(A –1)2

2A
ln

A +1

A "1

#

$
%

&

'
( =1 " 0 =1  (Reference 2, Table 8-1).

For oxygen (A=16): !
O
=

2

16 +
2

3

= 0.12.

For sulfur (A=32): !
S
=

2

32+
2

3

= 0.061.

For 235U (A=235): !
U 235

=
2

235 +
2

3

= 0.0085.

For 238U (A=238): !
U 238

=
2

238 +
2

3

= 0.0084.

 

 

  

!
mixture

=

N
O
"

s
O

!
O
+ N

H
"

s
H

!
H
+ N

S
"

s
S

!
S
+ N

U 235
"

s
U 235

!
U 235

+ N
U 238

"
s
U 238

!
U 238

N
O
"

s
O

+ N
H
"

s
H

+ N
S
"

s
S

+ N
U 235

"
s
U 235

+ N
U 238

"
s
U 238

!
mixture

=
(3.3066#10

$2
#3.76#0.12)+(2#3.3066#10

$2
#38.0#1)+(5.17#10

$4
#0.975#0.061)+(7.69#10

$5
#15.48#0.0085)+(4.401#10

$4
#9.38#0.0084)

(3.3066#10
$2

#3.76)+(2#3.3066#10
$2

#38.0)+(5.17#10
$4

#0.975)+(7.696#10
$5

#15.48)+(4.401#10
$4

#9.38)

!
mixture

=
2.528

2.643
= 0.956

Note that %
s

moderator =(3.3066 #10$2 # 3.76)+ (2# 3.3066 #10$2 # 38.0) = 2.637 cm
$1
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Now the resonance escape probability can be calculated using the following relationship:

P=exp –
3.06

!
mixture

"
s

moderator

N
U

238

#

$
%
%

&

'
(
(

)0.472*

+

,
,
,

-

.

/
/
/
= exp –

3.06

0.956

2.637

4.401 010)4

#

$%
&

'(

–0.472*

+

,
,

-

.

/
/
= 0.968.

 

 
The fast fission factor, ε, is assumed to be equal to 1.0 for this case to emphasize the 
importance of the resonance escape probability to this kind of system. Thus, the infinite 
multiplication factor is then k∞ = ηεfp. 
 

! "
#
= = $ $ $ =  2.004 0.706 1.0 0.968 1.370 (    3)k f p Answer to Part  

 
When analyzed in DANTSYS2, the k∞ was 1.368 – quite good agreement considering the 
difference in cross-sections and methods. Based on the result of this calculation, a tank with 
infinite dimensions at this concentration of uranyl sulfate solution would still not be safe 
at the lower uranium enrichment, even with the increased probability for neutron absorption 
in this kind of fissile system.  Now the critical dimensions for this system can be determined: 
 

  

L
th

2
=

D

!
a

=
0.16 cm

0.06610 cm
-1
=2.42 cm

2

B
m

2
=

k
"
#1

M
2

=
k
"
#1

L
2
+ $

=
1.370 #1

2.42+ 27
= 0.01258 cm

–2
 

R =
2.405

2

B
m

2
=

2.405
2

0.01258 cm
–2

= 21.4 cm

R = R # d = 21.4 cm–2.2 cm =19.2 cm.

 

 
The critical dimensions increased about 10% compared with the fully enriched case. A larger 
system than the previous case makes sense because this system has a significantly lower 
enrichment and more parasitic neutron absorption with the large quantity of 238U present. 
When analyzed in DANTSYS, the critical radius of an infinite cylinder with 14.7 weight 
percent 235U in uranyl sulfate was 19.0 cm.   
 
 

                                                        
 
2 DANTSYS is a code package designed to solve the discrete ordinates form of the Boltzmann transport equation 

in several different geometries. 
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2.5.3 Diffusion Theory Example Problem 3 

 
Assume a fissile system made up of a bare sphere of Na and 239Pu in which Pu is 30 
weight percent of the core mixture. Because this system has no moderating 
materials present, fast neutrons dominate the system (so one-group theory is 
sufficient). Assume the density of the mixture is 0.8 g/cm3. 
 

1. Using one-group diffusion theory, estimate the critical radius for this system. 

2. What is the probability that a neutron will leak out of this system? 

 
The data relevant for this problem is listed in Table 6 below. 

 
Table 6.  Diffusion Theory Example Problem 3 Data 

 
 Constituent Parameter Data Value Reference 

σa(fast) 2.11 barns 2, Table 6.1, pg. 222 
σf(fast) 1.85 barns 2, Table 6.1, pg. 222 
σtr(fast) 6.8 barns 2, Table 6.1, pg. 222 
υ 2.98 2, Table 6.1, pg. 222 

239Pu 

η 2.61 2, Table 6.1, pg. 222 
σa(fast) 0.0008 barns 2, Table 6.1, pg. 222 
σf(fast) 0 barns 2, Table 6.1, pg. 222 Na 
σtr(fast) 3.3 barns 2, Table 6.1, pg. 222 

 
Part 1.  First, calculate the atom densities for the Pu and Na:   

 

  

N =
wt. % Constituent in System ! "

mixture
! N

A

A
constituent

N
239Pu

=
(0.3)(0.80 g / cm3 )(0.6022 atoms - cm2 mol – b)

239.05 g / mol
= 6.05 !10–4  atoms / b - cm

N
Na

=
(0.7)(0.8 g / cm3 )(0.6022 atoms - cm2 mol – b)

22.99 g / mol
=1.4669 !10–2  atoms / b - cm.

 

 
Now that the atom densities have been calculated, the macroscopic cross-sections can be 
determined: 
 

  

!
a

mixture
= !

a

Pu

+ !
a

Na
= N

239
Pu

" #
a

239
Pu

+ N
Na

" #
a

Na

!
a

mixture
= 6.05 "10

$4
 atoms / b - cm " 2.11 b + 1.4669 "10

$2
 atoms / b - cm " 0.0008 b

!
a

mixture
=1.288 "10

$3
 cm

–1

 

 
The infinite multiplication factor can now be calculated. It can be assumed for this type of 
system that there is no leakage from a system with infinite size and all fissions occur at fast 
energies (ε = p = 1). 
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k
!
= " f =  " #

$
a

Pu

$
a

mixture
= 2.61 #

1.276 #10
%3cm–1

1.288 #10
%3cm–1

= 2.586  

 
Now the diffusion length, L2, can be calculated based on the result of the k∞ calculation. 

 

  

!
tr
= !

tr
+ !

tr
= N

239
Pu

" #
tr

Pu
+ N

Na
" #

tr

Na

!
tr
= 6.05 "10–4  atoms / b - cm( ) 6.8 b( ) + 1.4669 "10–2  atoms / b - cm( ) 3.3 b( )

!
tr
= 5.25 "10–2  cm–1

D
mixture

=
1

3!
tr

=
1

3 " 5.25 "10–2  cm
–1

$

%&
'

()
= 6.347 cm

L
2
=

D
mixture

!
a

mixture
=

6.347 cm

1.288 "10*3  cm
–1

= 4,930 cm
2.

Now, the material buckling, B
m

2 ,  can be calculated:

B
m

2
=

k
+
*1

L
2

=
2.587 *1

4,930 cm
2
= 3.22"10*4  cm

–2.

 

 
The buckling is needed to determine the critical size. Notice the diffusion length, L2, is rather 
large. This means that neutrons in this system diffuse or travel further on the average 
between collisions before being absorbed by the materials in this system, behavior which is 
due primarily to the very low fast absorption cross-section for sodium. Thus, it is expected 
that this system will be much larger than a thermal system such as a Pu metal and water 
mixture. The critical radius can be calculated now that the material buckling is known.  
Recall that the geometric and material bucklings are equal for a critical system. 

 

  

B
g

2
=

!
R

"

#$
%

&'

2

R =
! 2

B
g

2
=

! 2

3.22(10
–4

 cm
–1

=175.1 cm

R = R ) d = R ) 2.13 ( D =175.1 cm – 2.13 ( 6.347 cm =161.6 cm.

 

 
 

Therefore, the critical radius for a 239Pu and Na system is approximately 162 cm, which is a 
large system due to the rather low concentration of Pu in the system. The size of this system 
in general is related to the quantity of material present in the system. In most cases, fast 
systems are smaller than thermal systems but require more fissile material to achieve a 
critical state. In this case the extrapolation distance could be neglected because of the large 
size for this critical system. A DANTSYS calculation predicts a critical radius of 161.33 cm 
for this system, which is very close to that predicted by one-group diffusion theory. Because 
this is a fast, unmoderated system, one-group diffusion theory provides a reasonable 
estimate for the critical dimensions for this system. 
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Part 2.  The probability that a neutron will leak out of this system can be calculated as 
follows. The nonleakage probability, PL, is the probability a neutron will not leak out of the 
system. The leakage probability is simply equal to 1-PL and provides the probability that a 
neutron will leak out of the system. References 1 and 2 provide further detail about this 
topic. The non-leakage and leakage probabilities can be determined from the following 
relationship. 
 

  

1 ! P
L
=

L
2
B

m

2

1 + L
2
B

m

2

Knowing that the following is true, a simple way to calculate the leakage probability can be 

determined.

L
2
B

m

2
= k

"
!1

Now, for a critical system, the leakage probability can be calculated:

1 ! P
L( ) =

k
"
!1

1 + k
"
!1

=1 !
1

k
"

=1 !
1

2.586
= 0.613

 

 
This provides the analyst with information regarding the probability that a neutron will leak 
out of the system instead of being absorbed within the system materials. Based on this 
calculation, we know that more than 61% of the neutrons will leak out of the system. This 
calculation illustrates that, for a critical system, the geometry, and thus the system leakage, 
must be such to reduce the effective multiplication factor from 2.586 to 1.0.   
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2.5.4 Diffusion Theory Example Problem 4 

 
The Jezebel critical assembly used for experiments at Los Alamos was used to 
perform various critical experiments (Figure 4). Assume the assembly is made 
from δ-phase 239Pu (ρ = 15.61 g/cm3) and is an unreflected or bare system. Using 
one-group diffusion theory, estimate the spherical critical radius for this system 
with the three fissile pieces fully assembled. 
 

 
Figure 4. The Jezebel Critical Assembly at Los Alamos 
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The data relevant for this problem are listed in Table 7. Note that Jezebel is an unmoderated 
system dominated by fast neutrons. Therefore, the first step in solving this problem is to 
make sure that fast neutron cross-section data are used in the calculation. 

 
Table 7.  Diffusion Theory Example Problem 4 Data 

 
 Constituent Parameter Data Value Reference 

σa(fast) 2.11 barns 2, Table 6.1, pg. 222 
σf(fast) 1.85 barns 2, Table 6.1, pg. 222 
σtr(fast) 6.8 barns 2, Table 6.1, pg. 222 
σc(fast) 0.26 barns 2, Table 6.1, pg. 222 
ν 2.98 2, Table 6.1, pg. 222 

239Pu 

η 2.61 2, Table 6.1, pg. 222 
 

First, calculate the atom densities for the 239Pu so that the macroscopic cross-sections can be 
calculated: 

 

  

N =
wt. % Constituent in System ! "

mixture
! N

A

A
constituent

N
239Pu

=
(15.61 g / cm3 )(0.6022 atoms – cm2 mol -b)

239.05 g / mol
= 3.932!10–2  atoms / b – cm.

 

 
Now that the atom density for 239Pu has been calculated, the macroscopic absorption and 
fission cross-sections can be determined for this fast system: 
 

  

!
a

Pu

= N
239Pu

" #
a

239Pu

!
a

Pu
= 3.932"10

–2
 atoms / b - cm " 2.11 b=8.298 "10

–2
 cm–1

!
f

Pu
= N

239Pu
" #

f

239Pu

!
f

Pu
= 3.932x10

–2
 atoms / b - cm "1.85 b=7.274 "10

–2
 cm–1

.

 

 
The infinite multiplication factor, k∞, can now be calculated. Note that all fissions take place 
at fast energies and that only 239Pu is present in the system. The neutron leakage from this 
kind of system is rather high because the neutrons do not slow down in this type of system. 

 

  

k
!
= " = # $

%
f

Pu

%
a

Pu

k
!
= 2.98 $

7.274 $10
&2cm–1

8.298 $10
&2cm–1

= 2.612.

 

 
Now the diffusion coefficient, D, the diffusion length, L2, and the material buckling, Bm2, can 
be calculated based on the result of the k∞ calculation. 
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2
=

D
239

Pu

!
a

Pu
=

1.247 cm

8.298 (10–2  cm
–1

=15.03 cm
2

Now, the material buckling, B
m

2 ,  can be calculated:

B
m

2
=

k
+
*1

L
2

=
2.612*1

15.03 cm
2
= 0.1073 cm

–2.

 

 
The buckling is needed to determine the critical size. Notice the diffusion length, L2, for this 
system is much lower than for the Pu-Na system from the last example problem. Because the 
neutron absorption cross-section for a pure Pu system is greater than the Pu–Na system, 
neutrons will not travel as far, on the average, before being absorbed in this system. Now, for 
a critical system the material and geometric buckling values are equal. The critical 
dimensions for this system can be calculated as follows: 
  

  

B
m

2
= B

g

2
=

!
R

"

#$
%

&'

2

R =
! 2

B
m

2
=

! 2

0.1073 cm–1
= 9.59 cm

R = R ( d = R ( 2.13 ) D = 9.59 cm-2.13 )1.247 cm = 6.93 cm.

 

 
The actual Jezebel system had a density of 15.61 g/cc, was 4.5% 240Pu and had a critical 
radius of 6.385 cm. With these cross sections and assumptions of 100% 239Pu, this method 
slightly over predicts the critical radius for this type of system. 
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2.5.5 Diffusion Theory Example Problem 5 

 
The Godiva I critical assembly used for experiments at Los Alamos was employed 
in various critical experiments (Figure 5). Assume the assembly is made from 93.5% 
enriched 235U (ρ=18.74 g/cm3) and is an unreflected or bare system. Using one-group 
diffusion theory, estimate the spherical critical radius for this system with the 
three fissile pieces fully assembled.   

 

 
Figure 5. The Godiva I Critical Assembly at Los Alamos 



35 

The data relevant for this problem is listed in Table 8. Note that, like the Jezebel assembly, 
Godiva I is an unmoderated, fast system. Therefore, the first step in solving this problem is 
to make sure that fast neutron cross-section data is used in the calculation. 

 
Table 8.  Diffusion Theory Example Problem 5 Data 

 
 Constituent Parameter Data Value Reference 

σa(fast) 1.65 barns 2, Table 6.1, pg. 222 
σf(fast) 1.40 barns 2, Table 6.1, pg. 222 
σtr(fast) 6.80 barns 2, Table 6.1, pg. 222 

235U 

ν 2.60 2, Table 6.1, pg. 222 
σa(fast) 0.255 barns 2, Table 6.1, pg. 222 
σf(fast) 0.095 barns 2, Table 6.1, pg. 222 
σtr(fast) 6.90 barns 2, Table 6.1, pg. 222 

238U 

ν 2.60 2, Table 6.1, pg. 222 
 

First, calculate the atom densities for the enriched uranium so that the macroscopic fission 
and absorption cross-sections can be calculated: 

 

  

N =
wt. % of  Constituent in the System ! "

mixture
! N

A

A
constituent

N
235U

=
(0.935)(18.74 g / cm3 )(0.6022 atoms - cm2 mol – b)

235.04 g / mol
= 4.489 !10–2  atoms / b – cm

N
238U

=
(0.065)(18.74 g / cm3 )(0.6022 atoms - cm2 mol – b)

238.05 g / mol
= 3.081 !10#3  atoms / b – cm.

 

 
Now that the atom densities for 235U and 238U have been calculated, the macroscopic 
absorption and fission cross-sections can be determined for this fast system: 
 

  

!
a

U"235

= N
235
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a

235
U
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U"235
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!
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–2

 cm–1

!
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238U

# $
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!
f

U"238

= 3.081 #10
–3

 atoms / b – cm # 0.095 b = 2.927 #10
–4

 cm–1
.
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The infinite multiplication factor, k∞, can be determined now that the macroscopic cross-
sections have been calculated. Like the previous example problem, fast neutrons dominate 
this system. Also, because of the small size of the system, a large fraction of the neutrons 
leak out of the system.  
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(
)
*
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&4 cm–1( )
= 2.195.

 

 
Now the diffusion coefficient, D, the diffusion length, L2, and the material buckling, Bm2, can 
be calculated on the basis of the result of the k∞ calculation. 
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2.

Now, the material buckling, B
m

2 ,  can be calculated:

B
m

2
=

k
/
.1

L
2

=
2.195 .1

13.64 cm
2
= 0.0876 cm

–2.

 

 
We can use the process from the last example problem to determine the critical size for this 
system, knowing that when a system is critical, the material and geometric bucklings are 
equal. 

 

  

B
m

2
= B

g

2
=

!
R

"

#$
%

&'

2

,

R =
! 2

B
m

2
=

! 2

0.0876 cm–2
=10.61 cm,

R = R ( d = R ( 2.13 ) D =10.61 cm–2.13 )1.021 cm = 8.44 cm.

 

 
The physical radius of Godiva is 8.6 cm. The prediction using this method is very close to the 
actual system dimensions in this case. 
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2.5.6 Diffusion Theory Example Problem 6 

 
Using one-group diffusion theory, determine the infinite multiplication factor and 
the critical mass of Pu for a spherical, unreflected configuration of 239PuO2 with a 
density of 1, 3, 5, 7, 9, and 11.46 g/cm3. Compare these results with an infinite 
system of 239Pu.  

 
The first step in this problem is to compile the data needed to perform the calculations.  
Unmoderated plutonium oxide is assumed to have a fast neutron energy spectrum; so fast 
data from Reference 2 and 9 are compiled in Table 9.   
 

Table 9. Diffusion Theory Example Problem 6 Data 
 

 Constituent Parameter Data Value Reference 
σa(fast) 2.11 barns 2, Table 6.1, pg. 222 
σf(fast) 1.85 barns 2, Table 6.1, pg. 222 
σtr(fast) 6.8 barns 2, Table 6.1, pg. 222 
υ 2.98 2, Table 6.1, pg. 222 

239Pu 

η 2.61 2, Table 6.1, pg. 222 

σa(fast) 0.022 barns 26, Table 4-30, pg. 298 

16O 

σtr(fast) 3.09 barns 26, Table 3-39, pg. 148 

 
First, calculate the atom densities for the plutonium oxide constituents at a bulk density of  
1 g/cm3: 

 

  

N =
!

mixture
" N

A

A
constituent

N
239PuO

2

=
(1 g / cm3 )(0.6022 atoms – cm2 mol – b)

(239.052 g / mol+2"15.9994 g / mol)
= 2.222"10–3  atoms / b - cm

N
239

Pu
= N

239PuO
2

= 2.222"10–3  atoms / b – cm

N
16

O
= 2" N

239PuO
2

= 2" 2.222"10#3  atoms / b - cm = 4.444 "10#3  atoms / b - cm.

 

 
Now that the atom densities have been calculated, the macroscopic cross-sections can be 
determined: 
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The infinite multiplication factor can now be calculated. It can be assumed for this type of 
system that there is no leakage from a system with infinite size and that all fissions occur at 
thermal energies (ε = p = 1). 

 

  

k
!
= " f =  " #

$
a

Pu

$
a

Mixture
= 2.61 #

4.688 #10
%3

cm
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4.786 #10
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= 2.557  

 
Now the diffusion length, L2, can be calculated on the basis of the result of the k∞ calculation. 
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= 2,415 cm
2.

Now, the material buckling, B
m

2 ,  can be calculated:

B
m

2
=

k
*
+1

L
2

=
2.557 +1

2,415 cm
2
= 6.447 "10+4  cm

–2.

 

 
The buckling is needed to determine the critical size. Notice the diffusion length, L2, is rather 
large. As with the case with the Pu and Na example problem in Section 2.5.3, this means 
that neutrons in this system diffuse or travel farther on the average between collisions before 
being absorbed by the materials in this system, which is due primarily to the relatively low 
fast absorption cross-section for the oxygen in plutonium oxide. Thus, this system will be 
much larger than a thermal system such as a Pu metal and water mixture. The critical 
radius can be calculated now that the material buckling is known. Recall that the geometric 
and material bucklings are equal for a critical system. 
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 cm–1
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R = R ) d = R ) 2.13 ( D
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Calculate the critical volume of a sphere based on the calculated critical radius:

R = 99.1 cm

V =
4!

3
R3

=
4!

3
99.1( )

3

= 4.077 "106  cm3.

The critical mass of PuO
2
 can found simply by multiplying the critical volume by the density of 

the material:

m = # "V =1.0 
g

cm3
" 4.077 "106  cm3

"
kg

1000 g
= 4,077 kg.

 
A spreadsheet can be used to quickly calculate this methodology for the desired PuO2 
densities (3, 5, 7, 9, and 11.46 g/cm3). The results of these calculations are presented in Table 
10 for comparison purposes.  
 

Table 10. Calculation Results for Diffusion Theory Example Problem 6 
 

Density of 
Pu  

(g/cm3) 

Critical 
Spherical Radius 

(cm) 

Estimated 
Critical 

Mass of PuO2 
(kg) 

DANTSYS 
Estimated Critical 

Mass of PuO2  
(kg)  

1.0 99.1 4,080 3,522 
3.0 33.0 453 391 
5.0 19.8 163 141 
7.0 14.2 83 72 
9.0 11.0 50 43.5 

11.46 8.65 31 26.8 
 
Because this is a fast, unmoderated system, one-group diffusion theory provides a reasonably 
conservative estimate across the entire density range for the critical dimensions of this 
system. A series of DANTSYS calculations was performed to compare the hand calculations 
with a transport calculation using the 16-group Hansen-Roach cross-section set. The results 
of this comparison are shown in Figure 6. 
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Figure 6. Critical Mass Comparison for Diffusion Theory Example Problem 6 

 
 

As before with Pu systems, the tabulated fast cross sections tend to over predict absorption, which 
results in a larger estimate of spherical critical mass. 
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3. Buckling Conversion Method 

3.1 What You Will Be Able to Do 

 

• Use critical data for a fissile system with simple geometries to determine the critical 
dimensions for other simple geometries. 

• Use this method to perform comprehensive parametric studies on criticality safety 
parameters for simple fissile systems. 

3.2 Overview of Buckling Conversions 

 
This technique is very useful for using critical data for a fissile system with simple geometries to 

determine the critical dimensions for other geometries. The discussions in Chapter 2 demonstrate 
that the geometric buckling is a solution to the neutron diffusion equation and that the material 
buckling, which is dependent upon the materials in the system, is equal to the geometric buckling for 
a critical system. The relationship between the geometric and material bucklings can be derived 
from the critical equation: 
 

  

D!2" # $
a
" + k

%
$

a
" = 0, 

or, after some rearranging,

!2" +
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%
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D
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'
(
(

)

*
+
+
" = 0.

    For neutrons with the same energy, the one group diffusion area, L2  can be written:

L
2
=

D

$
a

.

    After substituting L2 , the diffusion equation can be written as follows:
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*
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where the material buckling is defined as follows:
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+
,   for simple one-group diffusion theory and
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for modified one-group diffusion theory. Now, at critical, B
m

2
= B

g

2 ,  so

B
g

2  can be substituted back into the diffusion equation 

*2+ + B
g

2+ = 0  or    B
g

2
= "*2.

 

 
Thus, notice that the geometric buckling, Bg2, is related directly to the neutrons leaking out of a 

system. Thus, fissile systems that have the same geometric buckling have similar leakage 
characteristics, which is independent of the geometry or shape of the system. The neutron balance 
used to derive the diffusion approximation is: 
 

Absorption + Leakage = Production. 
 

Absorption and production depend on the properties of the materials in the system and not on the 
geometry of the system.  Therefore, for a particular critical system, the neutron leakage out of a 
system must not be changing with time and does not depend on the shape of the system.   

 
The extrapolation distance, d, is important when doing buckling conversions because diffusion 

theory assumes that the flux is zero at some point, d, outside the physical dimensions of the system.  
Thus, the extrapolation distance must be used to reduce the predicted values for critical size to 
obtain an accurate estimate for the actual critical dimensions.  The value for d is usually constant for 
each type of reflector material that is in close contact with the fissile material (Reference 7).  
Further, values for d are determined from experimental data and calculations and relevant data for 
various fissile systems can be found in the literature (References 5, 7, 8, and 9). 
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Table 11. Geometric Buckling Expressions for Various Systems 
 

Configuration Geometry Illustration 

 
Geometric Buckling Bg2 

Relationship 
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Note: The variable d in each of the expressions for geometric buckling is the extrapolation distance, which is a 
function of the fissile material present in the system, the shape or geometry, and the materials surrounding the 
fissile material. 
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3.3 Applicability of the Buckling Conversion Method 

 
The buckling conversion method is applicable for fissile material systems with the following 

characteristics and assumptions. 
 

• This method allows the conversion among the various geometries mentioned in Table 11 
as long as the relevant critical data are available. 

• This method can be used for a wide variety of bare and reflected systems including both 
metal and solution systems. 

• Conversion between shapes that are extremely different such as a sphere and an infinite 
slab, for example, is not recommended (Reference 9). 

• Labeling a system as critical provides no information about the geometry or shape of the 
system. 

• A system can be critical in simple shapes (e.g., a sphere, cylinder, or slab). 

• Because the leakage must remain constant and is related to the buckling of a given 
geometry, the requirements for a critical system can be calculated. 

• The technique does not guarantee that mass or volume is conserved for critical systems 
that have different geometries. 
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3.4 Example Problems 

3.4.1 Buckling Conversions Example Problem 1 

 
Deep wells are present in a glovebox (Figure 7) where each has a length of 51 in., 
width of 14 in. and depth of 6 in. Suspended above these wells are 6 in. (15.24 cm) 
diameter storage tanks, each of which contains 30 liters of Pu solution. The Pu in 
the metal-water mixture contains 5 weight percent 240Pu. Assume that a single 30 
liter, 6 in. diameter storage tank breaks during operations, and its contents are 
completely drained into a one deep well.   

 
1. Determine the critical solution height in the deep well for a Pu concentration of 200 gPu 

per liter for unreflected system. That is, neglect the effects of neutron reflection from the 
well steel or other materials in the vicinity of the solution. 

2. Based on the initial volume in the cylindrical storage tank, can a criticality event occur? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

 
Figure 7. Isometric and Elevation Views of Solution Storage Tanks and Glovebox 

Deep Wells for Buckling Conversions Example Problem 1 
 
 
Part 1.  The first step in this problem is deciding which of the geometric buckling 
expressions to use from Table 11. Because the slab is in the shape of a parallelepiped, the 
expression for buckling would be sufficient for this problem.   
 
The geometric buckling for the parallelepiped that represents the deep well can be equated to 
that of an unreflected, critical sphere with a known critical radius: 

 

Deep wells with dimensions 51” L x 14” W x 6” D. 

Wells 

Figures are not to scale. 
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Solving this equation for the critical height, c, results in the following expression for the 

critical solution height in the well:
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Now that the critical slab height has been derived for this situation, critical sphere 
dimensions for a Pu concentration of 200 gPu/l should be referenced to complete the 
calculation. Figure 8 provides volume for a critical sphere for a Pu-metal water mixture for 
various reflection conditions. These data can be used to determine the spherical dimensions.  
Figure 9 provides a plot of the extrapolation distances for Pu metal-water mixtures with 5 
weight percent 240Pu for various reflection conditions.   
 

  

The extrapolation distance, d, can be referenced from Figure 9 for this system at a 

concentration of 200 g  Pu / l).

d = d
slab

= d
sphere

= 2.25 cm 

The critical volume for a spherical mixture of Pu metal and water for a concentration 

of 200 g  Pu / l is:

V =22.5 l. 

This critical, spherical volume can be converted into a critical radius:

r=
3V

4!
3 =

3 22.5 l( ) 1000 cm3 / l( )
4!

3 =17.5 cm.

Now the critical well height for the Pu metal-water mixture can be determined by using

the relationship derived previously:

c =
1

17.5 cm + 2.25 cm( )
2
"

1

129.54 cm + 2 #2.25 cm( )
2
"

1

35.56 cm + 2 #2.25 cm( )
2

$

%

&
&

'

(

)
)

–1/2

" 2 2.25 cm( )

c =18.5 cm.
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Figure 8. Critical Volume for an Unreflected Sphere with a Pu Metal-Water 

Mixture with 5 Wt. % 240Pu (Reference 5, Figure III.A.9.95-3) 

1 
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Figure 9. Extrapolation Distance Data for Pu Metal-Water Mixtures with 5 Wt. % 

240Pu (Reference 5, Figure III.A.10.95-3) 
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Part 2.  The critical slab height calculated in Part 1 can now be used to calculate the critical 
solution mass and volume required on the basis of the estimated critical height for the deep 
well. Knowing the Pu concentration, ρ, and deep well dimensions A, B and C, we can 
calculate the critical volume and mass from the following. 
 

  

The total volume and critical mass of the critical slab can be calculated as follows:

V = A ! B !C = 129.54 cm ! 35.56 cm !18.5 cm( )

V = 85,219 cm
3
= 85.2 l.

 

 
Thus, the total volume available to the slab tank from a single 6 in. diameter storage tank 
during an upset of this kind is 30 liters, which is far less than the 85 liters that is needed in 
the slab tank to result in criticality. If this process upset were to occur, a criticality event 
could not occur unless the contents of multiple tanks were to spill into the tank.   
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3.4.2  Buckling Conversions Example Problem 2 

 
Calculate the water-reflected, critical radius for a cylindrical tank that has a 
height of 20 cm, filled with 20 g/l Pu metal-water mix. The Pu is assumed to contain 
5 wt. % Pu-240. Compare this resulting critical radius with that of an infinite 
cylinder. 
 

  

Use the buckling formulas in Table 11 to equate the geometric buckling for a sphere to 

that of a finite cylinder:

!
R

sph
+ d

"

#
$
$

%

&
'
'

2

=
2.405

R
cyl

+ d

"

#
$
$

%

&
'
'

2

+
!

H + 2d

"

#
$

%

&
'

2

.

The extrapolation distance for water-reflected Pu can be found in Figure 9, (d = 5.65 cm),  

and, as stated in the problem description, the cylinder height, H, is 20 cm. The critical radius, 

R
sph

, for a thick water-reflected Pu sphere for a concentration of 20 g Pu/l can be determined 

by finding the critical volume for this system from Figure 8 and solving for R
sph

 using the 

volume/radius relationship for a sphere.

V
sph

=
4

3
!R

sph

3

Solve for R
sph

:

R
sph

=
3

4!
V

sph

"

#
$

%

&
'

1/3

=
3

4!
36.5 l( ) 1000 

cm3

l

(

)
*

+

,
-

"

#
$
$

%

&
'
'

1/3

= 20.58 cm.

Substitute the values for R
sph

 and H  into the previous equation solve for R
cyl

.

!
20.578 + 5.65

"

#
$

%

&
'

2

=
2.405

R
cyl

+ 5.65

"

#
$
$

%

&
'
'

2

+
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"

#
$
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&
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2

.

Solve this equation for R:

2.405

R
cyl

+ 5.65

"

#
$
$

%

&
'
'

2

=
!

20.58 + 5.65

"

#
$

%

&
'

2

/
!

20.0 + 2. 5.65

"

#
$

%

&
'

2

2.405

R
cyl

+ 5.65

"

#
$
$

%

&
'
'

2

= 0.01435 / 0.01007 = 0.00428

R
cyl

= 31.1 cm.
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It should be noted that the same extrapolation distances were used for both the sphere and 
the cylinder in this calculation. The height-to-diameter ratio (H/D) for this cylinder is 
H/D=20/30=0.667. Figure 16 (Reference 10, Figure 6), can be used to determine if the 
extrapolation distance used for the cylinder needs to be adjusted. For the cylinder considered 
in this example, the ratio {H/D/(1+H/D)}=0.25. The ratio of extrapolation distances for this 
case is approximately 1. These ratios have been empirically determined to high precision for 
solution cylinders of Pu solutions (Reference 10). Therefore, the extrapolation distance for a 
sphere is approximately equal to that of the cylinder considered for this example, thus no 
adjustment is required. 
 
To calculate the critical radius for a cylinder of infinite length, the same technique can be 
applied by using the fourth relationship in Table 11.   

 

  

Use the fourth buckling formula in Table 11 to equate the geometric buckling for a sphere to

that of an infinite cylinder;

!

R
sph

+ d

"

#

$
$

%

&

'
'

2

=
2.405

R
cyl

+ d

"

#

$
$

%

&

'
'

2

.

The extrapolation distance for water-reflected Pu can be found in Figure 9 (d = 5.65 cm).  

The critical radius for a thick water reflected sphere, R
sph

, is 20.58 cm from the finite cylinder

calculation. Substitute these values into the previous equation and solve for R
cyl

:

!

20.578 + 5.65

"

#
$

%

&
'

2

=
2.405

R
cyl

+ 5.65

"

#

$
$

%

&

'
'

2

.

Solve this equation for R
cyl

:

2.405

R
cyl

+ 5.65

"

#

$
$

%

&

'
'

2

=
!

20.578 + 5.65

"

#
$

%

&
'

2

2.405

R
cyl

+ 5.65

"

#

$
$

%

&

'
'

2

= 0.01435

R
cyl

=14.4 cm.

 

 
Notice that the infinite cylinder has a much smaller critical radius than a short, finite 
cylinder. This result makes sense because a finite cylinder has axial leakage as well as radial 
leakage while the infinite cylinder only has radial leakage. The critical radius calculation for 
an infinite cylinder with Pu (5 wt. % 240Pu) solution is comparable to the ANSI/ANS-8.1-1998 
(Reference 18) subcritical limit of 15.4 cm for 239Pu(NO3)4 solution at optimum concentration 
and thick water reflection. 
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3.4.3 Buckling Conversions Example Problem 3 

 
What is the critical height for a 15 cm diameter cylinder with the same solution 
defined in the last example problem? 
 
This problem can be solved with the same procedure from Section 3.4.2. As before, the 
geometric buckling of a critical sphere of a plutonium metal-water mixture can be set equal 
to the buckling relationship for a finite cylinder of radius, Rcyl, and height, H, as shown in 
Table 11.  

 

  

!

R
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2
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As previously stated, the extrapolation distances for a sphere and cylinder are approximately

the same. Thus, the extrapolation distance for the sphere was used.

The extrapolation distance for a sphere is determined from Figure 9 (d = 5.65 cm),  

and the cylindrical radius, R
cyl

,  is 7.5 cm. The spherical critical radius for a water-reflected 

sphere is 20.578 cm from Section 3.4.2.

!

20.58 + 5.65

#

$
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&

'
(

2

=
2.405

7.5 + 5.65

#

$
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'
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2

= 0.01435 * 0.03345

!

H + 2) 5.65

#

$
%

&

'
(

2

= *0.01910.

 

 
As indicated by the negative value for buckling, it is not possible for a 15 cm diameter, thick 
water reflected cylinder containing a 20 gPu/l (Pu with 5 wt. % 240Pu) solution to attain a 
critical state. This conclusion could also be reached from the previous analysis where a 
minimum 28.8 cm (14.4 cm × 2) diameter is required for a critical infinite cylinder containing 
the same material. Skinny, long cylinders such as this tend to have more neutron leakage 
than fat, short cylindrical tanks, which makes them more inherently safe. Figure 10 
illustrates that, for Pu densities less than about 1 kg/l (plutonium is in solution form), the 
critical diameter of an infinite cylinder will be about 15 cm (about 6 in.) for a water-reflected 
system. This fact is the main reason that cylindrical plutonium solution storage tanks are 
designed with this diameter or less to ensure, regardless of the plutonium concentration or 
neutron reflectors present, that criticality is impossible.   
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Figure 10.  Estimated Critical Diameters of Infinitely Long Cylinders of 
Homogeneous Water-moderated Plutonium (Reference 10, Figure 33) 
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3.4.4 Buckling Conversions Example Problem 4 

 
Two isolated cylindrical, non-favorable geometry tanks are being filled with a 
fissile solution.  The first tank is filled with a U(93.5)-water mixture while the 
second tank is being filled with a plutonium metal-water mixture with 5 wt. % 
240Pu (Figure 11). Both solutions have a fissile concentration of 100 g fissile/l.  
 
Determine the critical solution height for each tank and compare the results of the 
two systems. Repeat this calculation with a concentration of 150 g fissile/l. Assume 
that the tanks are not externally reflected; the tanks have a 10 in. (25.4 cm) outside 
radius; the tanks begin filling with solution at the same time; the rate of solution 
addition to the tank is the same; and no neutron poisons are assumed to be present 
in the tank. 
 
The first step in the solution to this problem is to compile the data needed for each mixture.  
 

  

Figures 13 and 14 provides information about the spherical critical mass and volume,

respectively, for a bare U(93.2) metal-water mixture as follows:

M
U (93.5)

=1.8 kg

V
U (93.5)

=18 l

R
U (93)

=

3V
U (93.5)

4!
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=
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-
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1/3

=16.3 cm.

Figures 8 and 12 provide the spherical critical mass and volume data, respectively, for Pu

metal–water mixtures containing 5 wt. % 240Pu as follows:

M
Pu(5)

= 2.25 kg

V
Pu(5)

= 22.5 l

R
Pu(5)

=

3 (V
Pu(5)

4!

"

#
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%

&
'
'
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3 ( 22.5 l (
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l

)

*
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,

-
.

4!

)

*

+
+
+
+
+

,

-

.

.

.

.

.

1/3

=17.5 cm.

The extrapolation distances for these systems can be found as follows.

For U(93.5) metal–water mixtures at 100 gU/l, the extrapolation distance from Figure 15

is about 2 cm.

For Pu metal–water mixtures (5 wt. % 240Pu at 100 gPu/l), the extrapolation distance 

from Figure 9 is about 2.2 cm.
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Recall that the geometric buckling for a sphere is equated to that of a cylinder as follows.
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For the U(93.5) solution tank, recall that the extrapolation distance for a sphere is about

the same for a cylinder (Figure 16):

!

16.3 cm + 2 cm
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H =17.3 cm.

For the Pu(5) solution tank, recall that the extrapolation distance for a sphere is about

the same for a cylinder (Figure 16, which can be used for Pu(5) solutions as well):

!

17.5 cm + 2.2 cm

"

#
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%

&
'

2

=
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%
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H =19.1 cm.

 

 
Although the critical height difference between the plutonium and uranium and water 
mixtures is small (about 2 cm), this calculation demonstrates that the uranium–water 
system will achieve a critical state before the plutonium–water system. Intuition supports 
this conclusion because the critical mass for an unreflected, spherical system is lower for 
uranium than for plutonium at a fissile concentration of 100-g/l. 
 
For 150-g/l fissile concentration, the calculation proceeds as before.   
 

 

Figure 13 provides information about the spherical critical mass for a bare U(93.2) 

metal–water mixture as follows (radius calculated based on volume):

M
U(93)

= 2.55 kg

V
U(93)

=17 l

R
U(93)

=16.0 cm.

Figures 8 and 12 provide the spherical critical volume and mass data, respectively, for Pu 

metal–water mixtures containing 5 wt. % 240Pu as follows:

M
Pu(5)

= 3.3 kg

V
Pu(5)

= 22.0 l

R
Pu(5)

=17.4 cm.

The extrapolation distances do not change appreciably from 100 to 150 g/l concentration.

Thus, the same extrapolation distances are used for this calculation.
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For the U(93.5) Solution tank, recall that the extrapolation distance for a sphere is about

the same for a cylinder (Figure 16):
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H =16.8 cm.

For the Pu(5) solution tank and recall that the extrapolation distance for a sphere is about

the same for a cylinder (Figure 16):
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H =19.0 cm.

 

Notice that at a fissile concentration of 150 g/l, the difference in critical height for these two 
systems is larger than at 100 g/l. The critical height difference between the two systems has 
increased from 1.8 cm to 2.2 cm. It can be seen from this problem that a Pu metal-water 
mixture (5 wt. % 240Pu) at 100 or 150 gPu/l requires more volume to achieve a critical state 
than for a U(93) metal-water system at the same concentration for the equivalent cylindrical 
system. This argument is also true for spherical systems as is shown in the minimum critical 
volume data for the unreflected spherical tanks.    
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Figure 11. KENO 3D Illustration of Tanks for Buckling Conversions Problem 4 (not 

to scale) 
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Figure 12. Spherical Critical Mass for a Plutonium-Water Mixture (5 Wt. % 240Pu) 
[Reference 5, Figure III.A.6.95-3] 
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Figure 13.  Critical Mass for Water Moderated U(93) Spheres [Ref. 10, Figure 10] 
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Figure 14. Spherical Critical Volume and Mass for a Mixture of U(93.5) and Water 
[Reference 5, Figure III.B.9(93.5)-2] 

 
 
 

3 

2 
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Figure 15. Material Buckling and Extrapolation Distances for U(93.5) and Water 
[Reference 5, Figure III.B.10(93.5)-1] 
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Figure 16. Ratio of Cylindrical to Spherical Extrapolation Distances [Reference 10, 
Figure 6]  
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4. Core-Density Conversions 
 

4.1 What You Will Be Able to Do 

 
• Determine the critical dimensions of a fissile system due to changes in the fissile material 

density or volume for a sphere, infinite cylinder or infinite slab. 

• Determine the critical mass of a fissile system due to changes in the fissile material density 
or volume for a sphere, infinite cylinder or infinite slab. 

4.2 Core-Density Method Overview 

 
For homogeneous, critical systems, one exact quantitative relationship can be applied if the 

density of that system changes uniformly. If the dimensions of an assembly are scaled inversely as 
the density, any neutron path from one region to another will scale in the same way. If the materials 
of that system remain unchanged, then there is no change in the neutron processes in that system 
(Reference 7, page 25). Even though the dimensions of the system change, the relative number of 
neutrons that leak out of the system, that are absorbed or that scatter remains the same. Thus, the 
system remains at a critical state (Figure 17). References 7, 8, 10, 11 and 12 provide much more 
discussion about this hand calculation method including supporting data. 

 

 
Figure 17. Illustration of Core-Density Method Concept 

 

4.2.1 Core-Density Conversions for Bare, Homogeneous Systems 

 
Table 12 provides the relationships from References 7 that can be useful for this method. The 

relationships for infinite cylinders and slabs are provided for information purposes. These 
relationships are not as commonly used as the relationships for spheres.   
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Table 12. Core-Density Conversion Relationships for Bare, Homogeneous Systems 
 

Geometry 
Critical Radius 

Relationship 
Critical Volume 

Relationship 
Critical Mass 
Relationship 

Sphere 
(Final radius, r, 
initial radius, r0, 
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Infinite Cylinder 
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Infinite Slab 
(Final thickness, t, 
initial thickness, t0, 
etc.)   

t

t
0

=
!
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0

"
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V
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m

m
0

= constant  

4.2.2 Core-Density Conversions for Reflected, Homogeneous System 

 
The following relationship from References 7 and 10 can be used to determine the critical 

dimensions for a reflected system when the reflector density remains constant. For example, 
consider a water-reflected metal system (Figure 18) whose metal density changes but the water 
density remains the same. This relationship based on experimental data is as follows: 
 

  

m
sphere

m
0,sphere

=
!
!

0

"

#
$

%

&
'

(S

, 

 
Where S is approximately constant over the range 0.5 ≤ r/ro ≤1.0, where r is defined as the final 

radius and ro is the initial radius of the system. The exponent, S, cannot exceed a value of 2, which 
implies that as the density of the core approaches zero, the system dimensions approach infinity. 
Thus the difference between a bare system and a reflected system has no particular meaning. 
Further, these references provide information about determining the core-density exponent, S. The 
example problem presented in Section 4.4.4 provides information about calculating S.  
 

 
 

Figure 18. Illustration of a Reflected, Homogenous System 
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4.3 Applicability of Core-Density Conversions 

 
The Core-Density method is applicable for fissile material systems with the following characteristics 
and assumptions. 
 

• The system needs to have a uniform, homogeneous composition,  

• If the system is reflected, the critical dimensions of both the core and reflector vary 
inversely with their density, assuming that the density of the core and reflector are 
changed by the same ratio (Reference 7), 

• The method cannot be used if the system contains heterogeneities such as lumps of fuel or 
fuel rods in a reactor, and 

• For reflected systems, if the reflector density changes, or if the core density changes are 
not uniform, the relationships presented in this section cannot be used to derive new 
system dimensions.  
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4.4 Core-Density Example Problems 

4.4.1 Core-Density Example Problem 1 

 
Calculate the critical mass for a spherical, unreflected Pu(4.5) metal system with a 
density of 19.8 g/cm3, assuming that the initial density for this system was 15.6 
g/cm3. 
 
Recall that Pu(4.5) is a system with 95.5 atom percent 239Pu and 4.5 atom percent 240Pu. The 
core-density conversion method can be used to calculate the bare critical mass for this 
system. The unreflected, spherical critical mass for Pu(4.5) system with a density of 
approximately 15.6 g/cm3 is approximately 16.8 kg (Reference 10, Table 32). 
 
Using the spherical critical mass relationship in Table 12, the critical mass for this system 
can be calculated as follows: 
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%
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(2

m =10.4 kg.

 

 
This critical mass result is consistent with the calculated data provided in Figure 21 
(Reference 5, Figure III.A.6-2), which reports the critical mass for a Pu metal system with 5 
wt. % 240Pu and a density of 19.8 g/cm3 as approximately 10.4 kg.   
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4.4.2 Core-Density Example Problem 2 

 
Calculate the critical radius for a spherical, unreflected Pu(5) metal system with a 
density of 9.9 g/cm3, assuming that the initial density for this system was 19.8 
g/cm3. 
 
Recall that Pu(5) is a system with 95 atom percent 239Pu and 5 atom percent 240Pu. The core-
density conversion method can be used to calculate the bare critical mass for this system. 
The unreflected, spherical critical mass for Pu(3.1) system with a density of approximately 
19.8 g/cm3 is approximately 10.3 kg (Reference 10, Figure 31). Using either set of data will 
provide a good estimate for the lower density Pu(5) metal system. 
 
Using the spherical critical mass relationship in Table 12, the critical mass for this can be 
calculated as follows.   
 

  

The critical radius for a Pu metal sphere with a critical mass of 10.3 kg for a density

of 19.8 g/cm3  is:
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This result is consistent with the results of a Keno V.a calculation for this system, where the 
critical radius was calculated to be approximately 10.1 cm. 
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4.4.3 Core-Density Example Problem 3 

 
Calculate the critical mass for a spherical, unreflected 239PuO2 system with a 
density of 1, 3, 5, 7, and 9 g/cm3, assuming that the initial density for this system 
was 11.46 g/cm3.  Compare the results to the results calculated in Section 2.5.6 
(Diffusion Theory Example Problem 6). 
 
Recall that the critical mass for an unmoderated 239PuO2 system was calculated in Section 
2.5.6, using diffusion theory,3 as approximately 31 kg.  Using the critical mass relationship 
from Table 12 for a spherical system, the critical mass for this unmoderated system can be 
calculated for the densities of interest. The same procedure used in Sections 4.5.1 and 4.5.2 is 
used to calculate the critical masses for this system: 
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m = 4084 kg.

 

 
This calculation is repeated for the other densities of interest. The resulting critical mass 
estimates for the system are summarized in Table 13. 
 

Table 13. Calculation Results for Core-Density Example Problem 3 
 

Density of 
Pu (g/cm3) 

Critical 
Spherical 

Radius 
(cm) 

Estimated Critical 
Mass of PuO2 (kg)  

(One-Group 
Diffusion Theory) 

Estimated Critical 
Mass of PuO2 (kg)  

(Core-Density 
Method) 

1.0 99.1 4,080  4,084  
3.0 33.0 453  453  
5.0 19.8 163  163  
7.0 14.2 83  83  
9.0 11.0 50  50  

 
Notice that the results are essentially the same as the critical mass estimates from Section 
2.5.6. As long as the initial critical mass is known with some confidence and the applicability 
of this technique is valid (Section 4.3), the critical mass estimates at other densities can be 
estimated very accurately with the core-density method.   

                                                        
 
3 The diffusion theory value is used, as it is consistent with the diffusion theory critical mass values shown in 

Table 10 and those used for comparison in Table 13. 
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4.4.4 Core-Density Example Problem 4 

 
Calculate the water-reflected critical mass for a spherical, Pu(5) metal system with 
a density of 15.75 g/cm3 if the Pu core had an initial density of 19.8 g/cm3. 
 
This system is different than Core-Density example problem 3 because this problem has a 
uniform density reflector surrounding the Pu. The core-density conversion relationship for a 
constant density reflector can be used to calculate the resulting critical mass for this case: 
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The critical mass of a water reflected sphere of Pu(5.2) at 19.74 g/cc is 5.8 kg (Reference 10, 
Table 32), while from section 4.5.1, the unreflected critical mass is 10.4 kg. Figure 19 can be 
used to determine the core-density exponent, S, for this system: 
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= 0.823  

 
From Figure 19, the value for the core density exponent (denoted in Figure 18 as n) is 
approximately 1.5. 
 

  

m = m
o

!
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(1.5

= 5.8 kg)
15.75 g/cm3

19.8 g/cm3

"

#
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%

&
'

(1.5

m = 8.2 kg.

 

 
This result is very close to the experimental data provided in Reference 10, Figure 35, which 
reports the critical mass for a water-reflected Pu(5) metal system with a density of 15.75 
g/cm3 as approximately 8 kg. Furthermore, the results of a Keno V.a calculation concluded 
that the critical mass for this system is about 8.25 kg. 



70 

Figure 19. Density Exponent Plot of Unmoderated Spherical Cores in Constant Density 
Reflectors (Reference 10, Figure 8) 
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5. Surface Density Method 
 

5.1 What You Will Be Able to Do 

 

• Determine the center-to-center spacing between fissile units in an array configuration where 
the array dimension in one direction is limited. 

• Estimate the required spacing between units of irregular shapes, such as equipment items 
with fissile material present, stored on a process floor. 

• Comprehensive parametric studies on various array parameters (fissile mass, spacing, array 
size, etc.). 

5.2 Surface Density Method Overview 

 
This particular method can be used to estimate the required spacing between fissile material 

units stored in a large configuration where the array size in one direction is limited or controlled 
administratively. For example, the surface density method would be valid for a planar array that is 
limited to stacking the fissile materials no more than two units high. This limitation would be 
controlled at the particular facility via an engineered or administrative control. Information beyond 
that covered in this section can be found in References 13, 14, 15, 16, and 17. The method was 
derived from the limiting surface density method, experimental and calculated critical data 
(Reference 33). The surface density method depends on knowing the critical dimensions for a water-
reflected infinite slab for the fissile material stored in the array.  
 

This method is used by projecting the fissile material mass of the array units onto an area of a 
plane (Reference 13) and comparing the resulting surface density to that of the critical surface 
density for the infinite water-reflected critical slab for the fissile material in question to determine if 
the array configuration is safe from a criticality safety perspective. Figure 20 illustrates this concept. 

 
The average surface density, ! , is the average when all fissile material is projected onto the 

largest face. This basically means projecting onto a surface, w, where the number of units, nw, is the 
minimum of (nx, ny, nz) with nx being the number of units in the x-direction, etc.  
 

Again, this formulation of the surface density method (Reference 13) was derived from limiting 
surface density relationships (Reference 23, 24, and 25). Chapter 7 provides a more comprehensive 
description of the limiting surface density method. The method was developed to determine a center-
to-center spacing that would provide a subcritical configuration. The method applies to individual 
units having a maximum effective multiplication factor, keff, of 0.9, that corresponds to a fraction 
critical mass of 0.73 for unreflected spherical array units. A simplified derivation from Reference 33 
for the surface density method is shown below.  
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    Begin with the limiting surface density relationship for the array material characteristics:

! m( ) = c
2
(m

0
"m) or after factoring out an m

0
,  ! m( ) = c

2
m

0
1 "

m

m
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#

$
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'
( .

    The limiting surface density relationship for the array geometric characteristics can be 

written as follows:

! m( ) =
nm

(2a
n
)2

1 "
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N

#

$
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&

'
(

2

.

 

  
The surface density method assumes an infinite planar array that is of finite height (i.e., n units 

high). Thus, the relationships can be modified to reflect this type of array. 
 

  

    For an infinite planar array (large number of units, N ), the relationship that describes the geometric 

characteristics of the array can be modified as follows:

! (m) =
nm

(2a
n
)2

1 "
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    This relationship can be simplified more by knowing that the quantity 2a
n
 is equivalent to the 

center-to-center spacing between array units, d. 

! (m) =
nm

d
2

.     

    Solving this equation for d results in a relationship for the center-to-center spacing as a function of 

the number of units in the finite direction, n, the array unit mass, m, and the limiting value of the surface 

density for the array, ! ,  which is dependent upon the material characteristics of the array:

d =
nm

!

*

+
,
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.
/

1

2

.

 

  

    The next step in the derivation is to calculate the allowed surface density for an infinite planar 

array. Recall that the the array material characteristics are described with the following limiting 

surface density relationship after some simplification earlier. The expression is also known as the 

allowed surface density:

! m( ) = c
2
m

0
1 "

m

m
0

#

$
%

&

'
( .

    The fraction of a critical mass, f , present at each location in the array is: f =
m

m
0

. The surface 

density method requires that the fraction critical, f , not exceed a value of 0.73. In Section 7.3.1, 

the effective multiplication factor, k
eff

, is defined as follows. 
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    For f = 0.73, the k
eff

= 0.73( )
1

3 ' 0.9. Thus, each unit in the array must not exceed this value. This

safety margin can be incorporated into the allowed surface density for the array.

( m( ) = c
2
m

0
1 )1.37
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0
1 )1.37f( ).

    If f  were equal to 0.73, the allowed surface density for that array would be zero: 

( m( ) = c
2
m

0
1 )1.37 * 0.73( ) = c

2
m

0
1 )1.37 * 0.73( ) = c

2
m

0
1 )1( ) = 0.

    This means that the surface density method cannot be used to define a safe spacing for this array

because the multiplication factor for each unit in the array is too high. This method would provide

an infinite calculational result for the required distance between array units.

 

 
The previous expressions for the allowed surface density can now be simplified and modified 

using experimental and calculational data for various infinite planar array configurations. 
 

  

    Examine the geometrical relationship for the allowed surface density. When m = 0, the allowed 

surface density is that of a infinite water reflected slab. When m = 0 :
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    The allowed surface density when the array unit mass is zero, ! (0), is also denoted !
0
,  so the allowed

surface density relationship can be written as follows.

! m( ) = !
0

1 "1.37f( ).

    Now, the expression in Reference 13, Eq. 4.5, defines the allowed surface density, with a coefficient

that limits the allowed surface density to 54% of the allowed surface density:

! m( ) = 0.54!
0

1 "1.37f( ). 
 

This coefficient is the product of two factors; one is for the shape of the array and the second is for 
the reflector material surrounding the array. This relationship can be substituted into the 
relationship for the center-to-center spacing that was previously derived with limiting surface 
density relationships. The product 0.54σ0 is the term that precludes the array containing small array 
units from achieving criticality, and the product 1.37f precludes the array from achieving criticality 
for large array units. These two products in the relationship for the allowed surface density ensure 
that the resultant center-to-center spacing results will provide an array that is subcritical. The 
center-to-center spacing between array units for the surface density method was defined previously 
as: 
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    Substitute the expression for  the allowed surface density that was just determined from Reference 13

and the following expression for d is determined.
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Each of the variables for d is defined below for Thomas’ representation of the surface density 

method (Reference 13): 
 
 σo – the surface density of the water-reflected infinite slab (g/cm2), 

 f – the ratio of the mass of a unit in the array to the critical mass of the unreflected sphere 
of the same fissile material (must not exceed 0.73 for this method to be 
applicable), 

 n – the number of fissile material units in the direction of the projection onto a wall or the 
floor of the storage location, and 

 m – the fissile material mass per array unit (g).
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Figure 20. Illustration of the Surface Density Method 
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5.3 Applicability of the Surface Density Method 

 
The surface density method can be used for a variety of fissile materials and array configurations, 

and it is applicable for the following situations: 
 

• The ratio of the mass of a unit in the array to the critical mass of the unreflected sphere of 
the same fissile material must not exceed 0.73 for this method to be applicable. The 
calculated array center-to-center spacing will result in a subcritical array configuration.  

• This method, as described above, is applicable to infinite planar arrays reflected by water 
at least 155 mm thick or its nuclear equivalent (Reference 13). Guidance for applying this 
method with arrays located next to concrete reflectors can be found in Reference 16. The 
example problems consider arrays with water reflection only. 

• This method can be used in situations where the fissile units have irregular geometries 
such as where equipment containing fissile materials is stored on a process floor 
(Reference 9). This method is useful for this situation because the surface density of an 
infinite, water-reflected slab bounds the mass of each fissile unit in the array.   

• Perturbations in the array unit and array shape are discussed in greater detail in 
References 13 and 16.  

• An engineered or administrative control would be required to limit the number units in 
one direction. For example, an array of fissile units can be stored infinitely on the floor of a 
facility; however, the units can only be stacked in a limited fashion (i.e., finite). If units 
need to be stored in an unlimited fashion, the density analog method may be a better 
method to use for that situation. 
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5.4 Surface Density Method Example Problems 

5.4.1 Surface Density Example Problem 1 

 

Calculate the minimum spacing for a planar array of 2-liter bottles of Pu, with 
5-wt. % 240Pu, solution, assuming a maximum concentration of 400 gPu/l? The array 
is assumed to be only one unit high (i.e., no stacking). 

 

The first step in the solution for this problem is to calculate the value of f, the ratio of the 
mass of a unit in the array to the critical mass of an unreflected sphere of the same material 
and the surface density of a water-reflected infinite slab. From Figure 21, the critical, 
unreflected spherical mass of Pu at 400 gPu/L with 5 wt. % 240Pu is about 9 kg, and the 
corresponding critical, unreflected spherical volume is 22.5 L from Figure 8. 
 
The surface density of a water-reflected slab, σo, can be determined by taking the product of 
the slab height of an infinite, water-reflected slab and the Pu concentration. The water-
reflected, infinite slab thickness for a Pu(5) solution system can be estimated from Figure 22 
as 2.7 in. or 6.86 cm. 

 

  

!
o
= 6.86 cm " 400 gPu / l " 0.001 l / cm3

!
o
=  2.74 gPu / cm2

.

 

 

  

The mass of Pu in each bottle of solution is

2 l / bottle ! 400 gPu / l = 800 g  Pu per  bottle.

The critical mass of an unreflected sphere of a mixture of Pu metal and water can be found by 

multiplying the Pu concentration by the spherical critical volume at the maximum concentration:

m = 400 gPu / L ! 22.5 L =  9 kg  (this is equal to the Pu critical mass for a system with 5 wt. % 
240Pu from Figure 21 for this concentration).

Now, f  can be calculated as follows:

f =
mass of  Pu in a  2 L bottle

critical mass of  unreflected Pu(5) metal -water  mixture

f =
800 gPu

9000 gPu
=  0.089.
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Knowing σo and f, the center-to-center spacing can be determined for an infinite array 
stacked one unit high (n = 1): 
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d =  25.0 cm (9.8 in.).

 

 
Therefore, as a limit, the center-to-center spacing for this one-unit-high, infinite array of Pu 
solution bottles containing 5 wt. % 240Pu should not be less than 25.0 cm (about 10 in.). 
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Figure 21. Spherical Critical Mass of an Unreflected Mixture of Plutonium 
and Water (Reference 5, Figure III.A.6-2) 
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Figure 22. Critical Infinite Slab Thickness of a Mixture of Plutonium and 
Water (Reference 5, Figure III.A.5-3) 
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5.4.2 Surface Density Example Problem 2 

 
What is the minimum center-to-center spacing for an infinite planar array of 
plutonium oxide (239PuO2) containers loaded with 4,500 grams of Pu per container?  
Assume that the Pu oxide density is 11.48 g/cm3, which is the theoretical density 
for PuO2; that the Pu is pure 239Pu; and that the array is assumed to be only one 
unit high (i.e., no stacking). 

 
This case can be solved using the same procedure as used in the last example problem. Recall 
that the first step in the surface density method is to calculate f, the ratio of the mass of a 
unit in the array to the critical mass of an unreflected sphere of the same material and the 
surface density of a water-reflected infinite slab, σo. 

The value of σo can be determined by taking the product of the slab height of an infinite, 
water-reflected slab and the theoretical Pu density. The water-reflected, infinite slab 
thickness for a 239PuO2 system can be determined via Reference 18, Table 4, as 1.4 cm (0.55 
in.) for Pu oxide that contains less than 1.5 wt. % water at theoretical density. 

 

  

!
o
=1.4 cm "11.48 gPuO

2
/ cm3

!
o
=  16.07 gPuO

2
/ cm2

.

 

 

Next, f needs to be calculated based on the critical mass of an unreflected sphere of 239PuO2 
and water. From Reference 19, the critical, unreflected spherical mass of 239PuO2 at 11.48 
gPuO2/cm3 is about 26,700 g. 

 

  

The value of f  can be calculated as follows:

f =
mass of  

239PuO
2

critical mass of  unreflected 
239PuO

2
 system at theoretical density

f =
5102 gPu

26700 gPu
=  0.192.

 

 

Knowing σo and f, the center-to-center spacing can be calculated for an infinite array stacked 
one unit high (n = 1): 
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d =  28.4 cm (11.2 in.).
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Therefore, as a limit, the center-to-center spacing for this one-unit-high, infinite array of 
239PuO2 containers is about 28 cm (11.2 in.). If the array were 2 units high (n = 2) and infinite 
in extent in the lateral directions, the center-to-center spacing between containers would 
increase to about 40.2 cm (15.3 in.), which is somewhat intuitive because of the presence of 
additional fissile material in the array requires a larger spacing. 

The full water reflection only makes the limited dimension have zero leakage, making it 
effectively infinite (Figure 23). 

 

 

Figure 23. Illustration of the Surface Density Water Reflection Assumptions 
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5.4.3 Surface Density Example Problem 3 

 
What is the minimum center-to-center spacing of an infinite planar array of 4,500 g 
Pu(5) metal ingots. For this problem, assume that the density of the Pu(5) metal 
ingots is the same as alpha-phase Pu, 19.75 g/cm3, and that the array is assumed to 
be only one unit high (i.e., no stacking). 

 

This case is very similar to the last two example problems. As before, the value of σo can be 
determined by taking the product of the slab height of an infinite, water-reflected slab and 
the material density. The water-reflected, infinite slab thickness for an alpha-phase Pu(3.1) 
metal system can be determined via Reference 10, Figure 34, as 0.82 cm (0.32 in). Note that 
the slab thickness is for Pu(3.1) and not Pu(5). Assuming a lower 240Pu content for this case 
results in more of the fissile 239Pu isotope being present; thus, the slab thickness used will be 
conservative. (A KENO V.a calculation gives ~0.835 cm for a pure 239Pu infinite slab). Now, 
calculate the surface density for the water-reflected, infinite slab. 

 

  

!
o
= 0.82 cm "19.75 gPu / cm3

!
o
=  16.20 gPu / cm2

.

 

 

Next, f needs to be calculated based on the critical mass of an unreflected sphere of Pu(5) 
metal-water. From Figure 21, the critical, unreflected spherical mass of Pu metal with 5 wt. 
% 240Pu at 19.75 gPu/cm3 is about 10,300 g. 

 

  

The value of f  can be calculated as follows:

f =
mass of  Pu(5) metal per  container

critical mass of  a  unreflected Pu(5) metal system at theoretical density

f =
4500 gPu

10300 gPu
=  0.437.

 

 

Knowing σo and f, the center-to-center spacing can be determined for an infinite array 
stacked one unit high (n = 1): 
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d =  36.0 cm (14.2 in.).
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Therefore, as a limit, the center-to-center spacing for this one-unit-high, infinite array of 
Pu(5) metal ingot containers is a little more than 36 cm (14 in.). If the array were 2 units 
high (n = 2) and infinite in extent in the lateral directions, the center-to-center spacing 
between containers would increase to about 51 cm (20 in.). 
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6. Density Analog Method 
 

6.1 What You Will Be Able to Do 

 

• Determine the center-to-center spacing between fissile units stored in array configurations, 
independent of the actual storage arrangement. 

• Estimate the required spacing between array units that have irregular shapes, such as 
equipment items with fissile material present stored on a process floor. 

• Comprehensive parametric studies on various array parameters (fissile mass, spacing, array 
size, etc.). 

6.2 Density Analog Method Overview 

 
This method is useful for addressing criticality limits for fissile materials stored or staged in 

array configurations regardless of the actual storage arrangement. Information beyond that covered 
in this section can be found in References 13, 16, and 17. Like the surface density method, this 
method was derived from experimental and calculated critical data and depicts the number of fissile 
units or total mass of all the fissile units in a critical, reflected array as a function of the average 
fissile material density in the array (Reference 16). This method was developed in the 1940s to 
consider the storage of weapon capsules in various array configurations (Reference 20). This method 
was modified and improved over the years because of inconsistencies between the subcritical 
measurements (used to derive relationships between the various array parameters) and critical 
array experiments performed in the 1960s.   
 

This formulation of the density analog method is also similar to the surface density method 
because it, too, depends on knowing the critical dimensions for a water-reflected infinite slab and the 
bare, spherical critical mass for the fissile material stored in the array. Although the surface density 
method does limit the array dimension in one dimension, there is no such limitation in the density 
analog method. The density analog method provides a fissile array unit spacing that results in a 
subcritical arrangement without any limitations to the size or shape of the array. The mass of the 
individual units, the number of units in the array, and their unit-to-unit spacing are the key 
parameters needed to apply the method in addition to critical conditions for a water-reflected infinite 
slab and the bare, spherical critical mass of the fissile material being stored in the array. 
 

As for the surface density method, the Thomas formulation of the density analog method 
(Reference 13) was derived from limiting surface density relationships (Reference 23, 24, and 25). 
The method applies to individual units having a maximum effective multiplication factor, keff, of 0.9, 
that corresponds to a fraction critical mass of 0.73 for unreflected spherical array units (Section 
7.3.1). A simplified derivation from Reference 33 is shown below.  
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    As before, the limiting surface density relationship for the array material characteristics can

be written as:
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    The limiting surface density relationship for the array geometric characteristics can be

written as:
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See the limiting surface density discussion in Chapter 7 for more information about these 

relationships. The density analog method formulation from Reference 13 defines the array unit 
center-to-center spacing, d, for a cubic array. Thus, the relationships can be modified to reflect this 
type of array. The limiting surface density method assumes that the array size is at least 64 units in 
size (at least a 4×4×4 array). 
 

  

    As shown for the surface density method, the center-to-center spacing between array units 

for a large array as a function of the number of units vertically, n, the array unit mass, m, and 

the limiting value of the surface density for the array, ! ,  (dependent upon the material 

characteristics of the array) is defined as:
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    Also, as defined in the surface density method, as the array unit mass approaches zero (m = 0), the

allowed surface density approaches that for a water-reflected slab known as the critical surface 

density, !
0
:
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The next step of the derivation is to equate the allowed surface density relationships for the array 

geometric and material characteristics and substitute the characteristics for large cubic arrays. 
Equating the limiting surface density relationships for the array material and geometry 
characteristics: 
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    After some simplification as previously defined, the following relationship is obtained. This is similar

to the surface density method derivation in the last chapter. Recall the relationships for the fraction

critical, f , and the center-to-center spacing, d, and that 1 "
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 approaches 1 for a large number

of array units, N. 

 

  

!
0

1 " f( ) =
nm

d2
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    For the surface density method, the maximum multiplication factor for an array unit is 0.9. This 

corresponds to a fraction critical of 0.73. Thus, 1.37f  ensures that the multiplication factor of the 

individual array units will be less than 0.9, which indicates that each unit will remain subcritical

in isolation. Incorporating this and solving for the center-to-center spacing results in the following.

d2
=

nm

!
0

1 "1.37f( )
.

 

 
The density analog method (Thomas’ methodology from Reference 13) assumes a cubic array 

(n×n×n) for the total number of units, equal to n3 = N. The center-to-center spacing between array 
units is equal to d (d = 2an) and the volume of a unit cell is V = d3. A relationship that compares the 
array density to the allowed surface density is derived below. 
 

  

    Continue with the previously defined equation and cube both sides of the equation. 
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    Substitute the definition for the array unit volume and the number of units in the array.
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V 2.  This is similar to equation 4.7 in Reference 13. This equation can be used

to determine the subcritical limits for array configurations for any shape (Reference 9). Continuing

the derivation results in the following:
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Simplify this relationship and solve for d:
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.  This is similar to equation 4.8 in Reference 13.

 

 

  

    The following relationship represents Thomas' representation of the density analog method. The

coefficient (2.1 or 0.69) in the expression, as in the surface density relationship, represents 

experimental and calculational data for cubic arrangements of fissile materials. The final 

expressions for the center-to-center spacing, d, between array units are listed below.
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Each of the variables for this center-to-center spacing relationship, d, is defined below for Thomas’ 

representation of the surface density method (Reference 13): 
 
where 
 
 n – the number of fissile units in  any dimension which is equal to N1/3, 
 σo – the surface density of the water-reflected infinite slab (g/cm2) as defined previously, 

f – the ratio of the mass of a unit in the array to the critical mass of the unreflected sphere 
of the same fissile material, and 

 m – the fissile material mass (g). 
 

6.3 Applicability of the Density Analog Method 

 
The density analog method can be used for a variety of fissile materials and array configurations.  

This method is applicable for the following situations. 
 

• This method, as described above, is applicable to cubic arrays reflected by water at least 
200 mm thick or its nuclear equivalent (Reference 13). Guidance for applying this method 
with arrays located next to concrete reflectors can be found in Reference 16. 

• This method can be used in situations where the fissile units have irregular geometries 
such as when equipment that contains fissile materials is stored on a process floor, for 
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example (Reference 9). This method is useful for this situation, because the surface density 
of an infinite, water-reflected slab bounds the mass of each fissile unit in the array.   

• Perturbations in the array unit and array shape are discussed in greater detail in 
References 13 and 16. The example problems consider arrays with water reflection only. 

• While the surface density method can be used for square or cubic arrays, the density 
analog method can be used for arrays that have any shape. 

6.4 Density Analog Method Example Problems 

 

The following example problems illustrate the use of the density analog method. The example 
problems used to demonstrate the use of the surface density method are also used to demonstrate 
the use of the density analog method. This will allow a direct comparison of both methods. 
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6.4.1 Density Analog Example Problem 1 

 

Using the density analog method, repeat the example problem in Section 5.4.1 for 
2×2×2, 10×10×10 and 100×100×100 arrays and compare the results. Recall that each 
unit of the array contains a 2-liter bottle of Pu(5) solution with a maximum 
concentration of 400 gPu/l. 

 

From the example problem in Section 5.4.1, the values of σo and f are the same, because the 
system has not changed; only the method we are going to use to calculate the center-to-center 
spacing between units has changed. So, the values of σo and f are summarized below. 

 

  

!
o
=  2.74 gPu / cm2

f = 0.089.

 

 

Knowing σo and f, the center-to-center spacing using the density analog method can be 
determined as follows. 

 

  

Start with the density analog relationship for a cubic array:

d =
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For the smallest array, 2) 2) 2:

d =
2) 800 gPu

2.1 ) 2.74 gPu / cm2 1 "1.37 ) 0.089( )
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d =  17.8 cm (7 in.)

 

  

For a 10 !10 !10 array:

d =
10 ! 800 gPu

2.1 ! 2.74 gPu / cm2 1 "1.37 ! 0.089( )
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d =  39.8 cm (~15.7 in.)

While for a 100 !100 !100 array:

d =
100 ! 800 gPu

2.1 ! 2.74 gPu / cm2 1 "1.37 ! 0.089( )
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d =  126 cm (~ 50 in.).
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In Section 5.4.1, the surface density method provided a center-to-center spacing between 
fissile units of about 25 cm (~10 in.). This is for an infinite number of Pu solution bottles in a 

planar array that is limited one unit high with no stacking
 
! " ! "1( ) . In contrast, the 

density analog results for the 2×2×2, 10×10×10 and 100×100×100 arrays demonstrate that, 
as one would expect, the center-to-center spacing would increase as the array got larger 
indicating the array is more reactive as the total number of units increase. The density 
analog method is more applicable to finite arrays that contain stacked fissile units. The array 
calculations above bound 8, 1,000 and 1,000,000 units for the 2×2×2, 10×10×10 and 
100×100×100 arrays respectively. If, for example, there were 500 solution bottles stacked in 
a 10×10×5 array configuration, the calculated spacing, 39.8 cm (15.7 in.) for the 10×10×10 
array would provide adequate spacing for the units in the array.   
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6.4.2 Density Analog Example Problem 2 

 

Using the density analog method, repeat example problem in Section 5.4.2 for 
2×2×2, 10×10×10 and 100×100×100 arrays. Recall that each container in the array 
contains Plutonium oxide (239PuO2) loaded with up to 4,500 grams of Pu. 

 

From the example problem in Section 5.4.2, the values of σo and f are the same, because the 
system has not changed; only the method used to calculate the center-to-center spacing 
between units has changed. So, the values of σo and f are summarized below: 

 

  

!
o
=  16.07 gPu / cm2

f = 0.169.

 

 

Knowing σo and f, the center-to-center spacing using the density analog method can be 
determined as follows: 

 

  

Again, start with the density analog relationship:
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For the 2) 2) 2 array:
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d =  18.6 cm (~ 7.3 in.)

For the 10 )10 )10 array:

d =
10 ) 4500 gPu
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d =  41.6 cm (~16.4 in.)

For the 100 )100 )100 array:

d =
100 ) 4500 gPu

2.1 )16.07 gPu / cm2 1 "1.37 ) 0.169( )
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d =  132 cm (~ 52 in.).
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Consider a situation in a fissile material storage area where 1,000 Pu oxide containers are 
stored in a 50×20×1 array. The density analog method for this example recommends a 
spacing of 41.6 cm (~16 in.) for 1,000 units arranged in a 10×10×10 array. This result would 
bound the 50×20×1 array because 1,000 units in a cubic array (10×10×10) is the most 
reactive array configuration. Spreading the 1,000 units out in any other configuration is less 
reactive than the 10×10×10 result. Therefore, the recommended spacing as calculated by the 
density analog method would be sufficient to maintain a subcritical arrangement under 
normal operating conditions.   

 

The surface density method for the same problem results in a center-to-center spacing of 28.4 

cm (11.2 in.) for an 
 
! " ! "1( )  array. If an administrative or engineered control is put into 

place to prevent the stacking of containers, then this method allows a much closer spacing, 
more than 13 cm (5.2 in.) closer, than the density analog recommended spacing. The 
following conditions could affect which method to consider:  

• Available spacing in the facility, and 

• Issues related to implementing a control on the stack height permitted in the storage 
array. 
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6.4.3 Density Analog Example Problem 3 

 
Using the density analog method, repeat the example problem in Section 5.4.3 
(Surface Density Example Problem 3) for 2×2×2, 10×10×10 and 100×100×100 arrays. 
Recall that each fissile unit in the array is a 4,500 g Pu(5) metal ingot. 

 

From the example problem in Section 5.4.3, the values of σo and f are the same, because the 
system has not changed; only the method used to calculate the center-to-center spacing 
between units has changed. So, the values of σo and f are summarized below: 

 

  

!
o
=  16.20 gPu / cm2

f = 0.437.

 

 

Knowing σo and f, the center-to-center spacing using the density analog method can be 
determined as follows. 

 

  

Once again, begin with the density analog relationship:
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d =  25.7 cm (~10.1 in.)

For the 10 )10 )10 array:
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d =  57.4 cm (~ 22.6 in.)
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For the 100 !100 !100 array:

d =
100 ! 4500 gPu

2.1 !16.20 gPu / cm2 1 "1.37 ! 0.437( )

#

$

%
%

&

'

(
(

1/2

d =  182 cm (~ 72 in.).

 

 

As one would expect, the Pu metal ingots require more spacing than the Pu solution bottles 
in Section 6.4.1 or the Pu oxide containers in Section 6.4.2 because of the higher fissile mass 
that is present. Also, the surface density method for the same problem (Section 5.4.3) results 

in a center-to-center spacing of 36.0 cm (14.2 in.) for an 
 
! " ! "1( )  array. If an 

administrative or engineered control is put into place to prevent the stacking of containers, 
then this method allows a much closer spacing, more than 21.4 cm (8.4 in.) closer, than the 
density analog recommended spacing for a  10 !10 !10 array. Again, the array hand 
calculation method to use for a particular problem depends upon the situation.  
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7. Limiting Surface Density (NBN2) Method 
 

7.1 What You Will Be Able to Do 

• Determine the critical mass and critical unit spacing between fissile units in the array for 
arrays of any shape provided the necessary array and fissile material data are known. 

• Determine spacing between fissile array units for individual units of any shape or density. 

• Calculate spacing between fissile array units with different fissile materials in the array or 
different reflectors (i.e., water vs. concrete). 

• Calculate the multiplication factor for various array configurations. 

7.2 Limiting Surface Density (NBN2) Method Overview 

 
This method was developed to allow for complex array analyses to be performed without doing 

expensive computer calculations. Although codes may be advantageous these days, the limiting 
surface density or NBN2 technique is still a very comprehensive and valid technique with which to 
analyze various array configurations. The NBN2 method combines the density analog method and 
diffusion theory into a thorough method for performing array criticality calculations (Reference 21). 
The geometric buckling for a single unit is expanded analogously for a cubic array, which can then be 
expanded to arrays of various shapes. This method can also be used to substitute other fissile array 
units and reflector materials. Because this method is such a comprehensive one, it can be more 
difficult than the other array methods to understand and apply, initially. However, it is the most 
comprehensive and flexible of the array methods presented here. This method is easily adapted to a 
spreadsheet or computer code, where quick parametric studies on the factors affecting criticality 
safety can be performed. A brief overview of this method is provided in this section for the analyst to 
quickly become familiar with the method to perform array calculations. Additional derivations and 
variations of the method are described in significantly more detail in References 21–27. 
 

Typically, the NBN
2 method is used to determine critical spacing of units with a given mass. Then 

this information is used to determine allowable masses or spacing based on a desired keff. The NBN
2 

method was developed from a combination of diffusion theory and of the density analog method. For 
arrays consisting of the same fissile material units with the same keff the basic premise for this 
method is that the number of neutrons that leak out of the array boundary is constant (Reference 9). 
Reference 21 provides a very detailed derivation that is an excellent supplement to the discussions in 
References 23, 24, and 25. For this method to be applicable, the array must have at least 64 units 
(Figures 24 and 25). 
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The limiting surface density, σ(m), for a cubic array is based on air-spaced, spherical units with a 
thick water reflector at the outside array boundary (Figure 24), and for a cubic array, σ(m), is 
defined by the following relationship: 
 

  

! (m) =
n

z
m

(2a
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c

N

#

$
%

&

'
(
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,  

 
where 
  
nz – the least number of units along an array edge {= minimum (nx, ny, nz)}, which is equal to 

  N
3 for a cubic array, 

m – the mass of an array unit (kg), 

an – half of the center-to-center spacing between units in the array (cm) as illustrated in Figure 
26, 

c – an empirically determined constant (Reference 25) equal to 0.55 ± 0.18, and 

N – the total number of fissile units in the array. 

 
The term, nzm/(2an)2, represents the surface density (g/cm2) of a stack of nz units with mass m 

and a center-to-center spacing 2an as illustrated in Figure 27. 
 

 
Figure 24. Keno 3D Illustration of a 64-unit Array with a Thick Water 

Reflector 
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Figure 25. Illustration of a 64-unit Cubic Array 

 
 
 

 
 

Figure 26. Illustration of the Center-to-Center Spacing between Array Units 
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Figure 27. Illustration of the Surface Density of a 64-Unit Array with nz = 4 
 

This relationship is mainly dependent on the geometrical properties of the array. Another 
relationship can be defined that is dependent upon the material properties of the array units based 
on experimental observations: 

 

  
! (m) = c

2
m

o
"m( )  

 
where  
 
c2 – a constant that depends on all of the material properties of the arrays except for the mass, 

m, and is also equal to the slope of the “material-line” discussed later (cm–2) (Table 14 
provides values for this constant for various fissile systems), 

mo – the critical mass (kg) of an unreflected, single fissile unit in the array (Figure 28), and 

m – the mass (kg) of a fissile unit in the array (Figure 28). 
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Figure 28. Illustration of m and mo 
 

 
Both of these expressions for σ(m) are linear relationships with the independent variable being 

fissile unit mass, m, and the dependent variable, the surface density, σ(m). These expressions can be 
combined into a relationship that includes both the geometrical and material properties of the array 
for a single picture of the criticality of an array: 
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Dividing these equations by m results in the following:
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Equating these two relationships results in the following:
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This relationship can be used to solve for the fissile material mass, m, or array unit center-to-

center spacing, 2an, required for the array to achieve a critical state. These relationships are defined 
below. 
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    The array unit mass, m, is required for a critical array:
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    The array unit center-to-center spacing, 2a
n
, is required for a critical array:
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Because the geometrical and material expressions for the limiting surface density, σ(m), the 

dependent variable, are linear relationships and are set equal, the critical point of an array can be 
determined by plotting these relationships to determine where the two expressions intersect. Figure 
29 illustrates that the m is the independent variable and σ(m) is the dependent variable, while the 
expression in front of the variable, m, defines the slope of the line.   

 

 
 

Figure 29. Illustration of the Limiting Surface Method 
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7.3 Applicability of the Limiting Surface Density Method 

 
The limiting surface density method is a versatile and comprehensive method to perform array 

studies for a variety of fissile materials and array configurations. This method is applicable for the 
following situations. 
 

• This method was developed for cubic arrays (air-spaced units) reflected by water at least 
200 mm thick or its nuclear equivalent. Guidance for applying this method with arrays 
located next to concrete reflectors can be found in Reference 16. 

• Arrays of units of any shape can be treated provided the data for c2 and mo are available 
(Reference 17). 

• The array units should have an H/D ratio between 0.3 and 3. 

• To achieve a limiting value for the surface density, the use of the method is limited to cubic 
arrays with at least 64 fissile units (some of the example problems apply the method to 
arrays with fewer units, but do not achieve a limiting surface density value). 

• This method does not specifically account for non-uniform moderation within the arrays; 
however, the data in Table 14 does consider moderated units with an H/X ratio of up to 20. 
Thus, this technique can be used for slightly moderated units but not for solutions. 

• References 21 and 24 state that if a cubic array has less than 64 units, then a sphere may 
not be the most limiting fissile array unit. 

• If the method is to be used for various array units with different fissile material 
compositions, care should be exercised when mixing units with significantly different 
levels of moderation.  

• A disadvantage of this method is that, for some problems, scaling one array type to 
another in order to ultimately end up with the configuration of interest may involve a 
significant number of calculations (see example problems for the limiting surface density 
method in Reference 9), which can introduce opportunities for error. 
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Table 14. Bare Spherical Critical Masses and Characteristic Constants for Some Fissile 
Materials in Water Reflected Cubic Arrays (Reference 26) 

 
Characteristic 

Constant, c2, for 
Criticality of Water-

Reflected Arrays  
(10-3 cm-2) 

No. Material H/X 

Spherical 
Unit 

Unreflected 
Critical Mass, 

mo (kg) 
c2 ± 

1 Metal, U(100)4 0 45.68 1.806 0.036 
2 Metal, U(93.2) 0 52.10 1.762 0.017 
3 Oxide, U(93.2)O2 0.4 90.24 0.854 0.007 
4 Oxide, U(93.2)O2 3 63.59 0.758 0.008 
5 Oxide, U(93.2)O2 10 31.43 0.778 0.007 
6 Oxide, U(93.2)O2 20 17.34 0.805 0.004 
7 Metal, U(80) 0 69.89 1.359 0.012 
8 Oxide, U(80)O2 0.4 111.36 0.780 0.006 
9 Oxide, U(80)O2 3 74.08 0.713 0.006 

10 Oxide, U(80)O2 10 36.16 0.725 0.006 
11 Oxide, U(80)O2 20 18.67 0.779 0.005 
12 Metal, U(70) 0 89.16 1.192 0.018 
13 Oxide, U(70)O2 0.4 133.39 0.723 0.006 
14 Oxide, U(70)O2 3 83.44 0.686 0.006 
15 Oxide, U(70)O2 10 36.89 0.735 0.004 
16 Oxide, U(70)O2 20 19.30 0.793 0.004 
17 Metal, U(50) 0 159.60 0.901 0.008 
18 Oxide, U(50)O2 0.4 207.73 0.589 0.005 
19 Oxide, U(50)O2 3 112.82 0.594 0.004 
20 Oxide, U(50)O2 10 55.14 0.520 0.006 
21 Oxide, U(50)O2 20 21.48 0.777 0.005 
22 Metal, U(40) 0 228.06 0.787 0.016 
23 Metal, U(30) 0 379.70 0.589 0.007 
24 Oxide, U(30)O2 0.4 409.60 0.450 0.003 
25 Oxide, U(30)O2 3 150.01 0.603 0.005 
26 Oxide, U(30)O2 10 54.01 0.636 0.004 
27 Oxide, U(30)O2 20 25.15 0.744 0.005 
28 Metal, Pu(0)5 0 9.95 4.356 0.112 
29 Oxide, Pu(0)O2 0.4 26.66 1.542 0.015 
30 Oxide, Pu(0)O2 3 28.65 1.113 0.010 
31 Oxide, Pu(0)O2 10 20.21 0.965 0.007 
32 Oxide, Pu(0)O2 20 14.05 0.885 0.008 
33 Metal, Pu(5.2) 0 10.34 4.138 0.091 
34 Oxide, Pu(5.2)O2 0.4 27.93 1.561 0.013 
35 Oxide, Pu(5.2)O2 3 32.78 1.097 0.011 

                                                        
 
4 U(X) denotes uranium enriched to X weight percent in U-235 (i.e., U[100] denotes isotopically pure U-235 with no U-238 

present and U(93.2) indicates uranium enriched to 93.2 weight percent U-235 with the remainder U-238). 

5 Pu(Y) denotes plutonium with Y atom percent Pu-240 (i.e., Pu[5.2] denotes plutonium with 5.2 atom percent Pu-240 and the 

remainder Pu-239). 
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Characteristic 
Constant, c2, for 

Criticality of Water-
Reflected Arrays  

(10-3 cm-2) 

No. Material H/X 

Spherical 
Unit 

Unreflected 
Critical Mass, 

mo (kg) 
c2 ± 

36 Oxide, Pu(5.2)O2 10 28.74 0.817 0.007 
37 Metal, Pu(20) 0 11.69 4.261 0.099 
38 Oxide, Pu(20)O2 0.4 32.14 1.529 0.023 
39 Oxide, Pu(20)O2 3 42.43 1.022 0.013 
40 Oxide, Pu(20)O2 10 47.81 0.679 0.005 
41 Metal, U-233 0 15.75 2.751 0.022 
42 Oxide, U-233O2 0.4 34.46 1.199 0.008 
43 Oxide, U-233O2 3 31.69 0.939 0.008 
44 Oxide, U-233O2 10 17.64 0.907 0.010 
45 Oxide, U-233O2 20 10.28 0.947 0.009 

46 
Metal, U(93.2)-10 
wt. % Mo 

0 73.06 1.305 0.009 

 

7.3.1 Calculating the Multiplication Factor of an Array 

 
A useful relationship developed by Thomas (References 21 and 25) for calculating the effective 

multiplication factor, keff, for array configuration is given by the following relationship.   
 

  

    This expression is a function of the unit mass before and after a change to the mass of an array 

unit.  In this equation, !m  is the mass of a spherical fissile unit in a critical array and m is the mass

of a spherical fissile unit in a subcritical array, while !r  and r  represent the spherical critical and 

subcritical radii for these fissile units in the array, respectively.
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    By substituting the expression for the fissile material density, this equation can be rearranged to 

be a function of only the unit radius.  Recall that the volume of a sphere is equal to V =
4

3
(r3 :
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=

m
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    Solve for m and substitute into the previous relationship for the multiplication factor (note that 

the spacing between array units and the material density, ), does not change as it is the same fissile 

material for both units):
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The use of this relationship will be illustrated in the example problems to follow. Also, this 

expression for the keff of an array can be used to derive relationships for the center-to-center spacing, 
d, between array units, and the keff as a function of d. 
 

7.3.2 Limiting Surface Density Relationships for Subcritical Arrays 

 
Unlike the surface density and density analog methods, the limiting surface density relationships 

derived in Section 7.2 are valid for critical array configurations. Using these relationships and the 
keff relationship in Section 7.3.1, expressions for the center-to-center spacing, d, can be derived as a 
function of the desired keff for a particular array configuration. 
 

Begin the derivation with the expression for the keff for an array as defined in Section 7.3.1. 
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The following product can be performed to determine the ratio of the unreflected critical mass of 

an array unit to the array unit mass in a critical array. 
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    The limiting surface density relationship defined in Section 7.2 to determine the array unit

mass required for a critical array is given by the following relationship:
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Substitute the limiting surface density expression for the center-to-center spacing, d, between 

array units in a critical array with the array unit mass, m′, that results in a critical array. This 
results in the following expression: 
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    So, d
0
 is the critical spacing for !m . The center-to-center spacing, d

0
, for a critical array can be 

written as follows:
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Replacing m′ with m (m < m′) and retaining the spacing, d0, will produce an array with a keff < 1. 
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Solving for m, the array unit mass required for an array k
eff

:
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7.3.3 Summary of the Fundamental Limiting Surface Density Relationships 

 
This section summarizes the fundamental limiting surface density relationships defined up to this 

point of Chapter 7. Other relationships are defined to consider changes in array unit density, for 
example, and will be considered in subsequent sections. For this section, , d, represents the center-to-
center spacing for a critical array and d0 represents the center-to-center spacing for an array with a 
particular keff.  
 
• Array unit center-to-center spacing, d, in a critical array: 
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• Array unit center-to-center spacing, d, as a function of the array keff: 
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• Array keff as a function of array unit mass, m: 

 
 
 
 

 
 
 
 

 
• Array unit mass, m, required for a desired array keff: 
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.
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7.4 Example Problems for Limiting Surface Density 

 
Using the graphical technique, as illustrated in Figure 29, can be helpful to visualize changes to 

the critical points of an array during a parametric study. This concept will be shown in some of the 
example problems that follow. Table 14 provides values of the unreflected spherical critical mass and 
characteristic constants for a variety of materials for use in the example problem solutions. The 
example problem solutions and a comparison to a computer code (SCALE or MCNP) have been 
provided in Chapter 9. 
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7.4.1 Limiting Surface Density Example Problem 1 

 

Using the limiting surface density method, repeat example problem in Section 5.4.2 
(Surface Density Example Problem 2) for 2×2×2, 10×10×10 and 100×100×100 arrays. 
Recall that each container in the array contains Plutonium oxide (239PuO2) loaded 
with up to 4,500 grams of Pu. 

 

The limiting surface density relationships were developed from array configurations with 
more than 64 units. Thus, this method should not be used for the 2×2×2 array; however the 
other cubic arrays, the 10×10×10 and 100×100×100 configurations, can be evaluated using 
this method. From Section 7.1, the center-to-center spacing between array units can be 
derived as follows. 

 

  

Recall that the center-to-center spacing between array units for a critical array is given by

the following relationship for arrays with more than 64 units:
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Where: 
 
mo – 26.66 kg for 239PuO2 oxide with an H/X = 0.4 (Table 14), 
m – 4.5 kg from the problem description, 
nz – 10 and 100 from the problem description, 
c2 – 0.001542 cm–2 (Table 14), 
N – equal to n3=1,000 and 1,000,000, and 
c – 0.55, defined previously. 
 
Note that there is a small quantity of moisture in the critical mass and c2 data listed in Table 
14. This fact should not affect the result much because a small quantity of moisture only 
tends to reduce the density of the Pu oxide instead of providing significant moderation.  
Substituting the values for each variable into the array critical mass relationship provides 
the following center-to-center unit spacing result. 
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110 

This spacing of PuO2 units would make the 10×10×10 cubic array critical. The result from 
Section 6.4.2 for the 10×10×10 array was about 41.6 cm (16.4 in.), which is for a subcritical 
array configuration. The density analog relationships have some safety margin built into the 
center-to-center spacing expression provided by Reference 13. 
 
For a 100×100×100 array, one would expect that the critical, center-to-center spacing be 
much larger than that for the 10×10×10 array. The 100×100×100 cubic array center-to-center 
spacing is given by:  
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This is significantly more spacing between units than for the 10×10×10 case. The result from 
Section 6.4.2 for the 100×100×100 array is 132 cm (~52 in.), which will provide a subcritical 
spacing for the array. Because of the incorporated safety margin, the density analog and 
surface density methods will provide a larger center-to-center spacing than the limiting 
surface density method. 

 

Note that the surface density of the arrays given by 
  

n !m

d
2

 approaches a limiting value, as n 

gets larger. For the 10x10x10 array, the surface density is: 
 

  

n !m
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2
=35.3g/cm2 , while the surface density for the 100x100x100 array is: 
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2
=34.2 g/cm2 .  

 
A quick calculation with a spreadsheet shows that the limiting value for the surface density 
for this example problem is about 34.2 g/cm2 as the array size increases toward an infinite 
number of units. A simpler way to determine the limiting value for the surface density is to 
calculate it using the definition for the surface density that is dependent upon the material 
properties of the array: 
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2
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 and m are previously defined. Substituting these values into this 

relationship results in the same limiting surface density value:
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7.4.2 Limiting Surface Density Example Problem 2 

 
Using the limiting surface density method, repeat the example problem in Section 
5.4.3 (Surface Density Example Problem 3) for 10×10×10 and a 100×100×100 arrays. 
Recall that each fissile unit in the array is a 4,500 g Pu(5) metal ingot. 

 

  

Recall that the center-to-center spacing between array units for a critical array is given by the

following relationship for arrays with more than 64 units:
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Where: 
 
mo – 10.34 kg for Pu(5.2) metal (Table 14), 
m – 4.5 kg from the problem description, 
nz – 10 and 100 from the problem description, 
c2 – 0.004138 cm–2 (Table 14), 
N – equal to n3 = 1,000 and 1,000,000, and 
c – 0.55, defined previously. 
 
Note that the data from Table 14 for Pu metal is for Pu(5.2), which contains 5.2 atom percent 
240Pu. This should not significantly affect the results. Substituting the values for each 
variable into the array critical mass relationship provides the following center-to-center unit 
spacing result. 
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This is the spacing of 4.5 kg Pu(5.2) metal units required to keep the 10×10×10 cubic array 
critical. The result from Section 6.4.3 for the 10×10×10 array was about 57.4 cm (22.6 in.), 
which represents a subcritical center-to-center spacing result. In contrast, the limiting 
surface density will provide a center-to-center spacing for a critical array. 
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For a 100×100×100 array, one would expect that the critical, center-to-center spacing would 
be much larger than the 10×10×10 array. 
 

  

The 100 !100 !100 cubic array center-to-center spacing is given by:
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This is significantly more spacing between units than that for the 10×10×10 case. The results 
from Section 6.4.3 for a 100×100×100 subcritical array is 182 cm (~72 in.). Because of the 
safety margin that is incorporated into the method, the density analog method will provide a 
larger center-to-center spacing between array units than the limiting surface density 
method. A critical array unit spacing result from the limiting surface density method is not 
the most practical guidance to implement. However, the keff relationships in Section 7.3.1 can 
be used to determine the array unit mass for a desired multiplication factor. Also, a 
relationship was derived for this Primer to consider the array unit center-to-center spacing 
as a function of the array keff (Section 7.3.2). Thus, if a criticality safety engineer wanted a 
center-to-center spacing result that resulted in an array keff of 0.8, the following calculation 
could be done. 
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Thus, to maintain a subcritical configuration for this large array size, it makes sense that the 
array units should be spaced much further apart than for the critical array. 
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7.4.3 Limiting Surface Density Example Problem 3 

 
Using the limiting surface density method, calculate the critical mass for each 
array unit required for a water-reflected cubic array of fully enriched U(100) metal 
for a 4x4x4 array with a center-to-center spacing of 30 in. (76.2 cm).  After the 
critical mass is calculated, determine the multiplication factor for storing 20 kg of 
U(100) units in the 4x4x4 array. 
 
Non-graphical solution 
 
For a 4×4×4 cubic array with the given spacing: 

• n = nx = ny = nz = 4  

• an = ax = ay = az = 30/2 = 15 in. (38.1 cm) 

The following relationship for a cubic array can be used to determine the critical mass per 
unit to maintain the array in a critical condition for U(100) metal units. 
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where 
 
mo – 45.68 kg from Table 14,  
nz – 4 from the assumptions specified above, 
an – 15 in. (38.1 cm) from the assumptions specified above, 
c2 – 0.001806 cm–2 from Table 14, 
N – equal to n3 = 64, and 
c – 0.55, defined previously. 
 
Substituting the values for each variable into the array critical mass relationship provides 
the following result: 
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This is the mass of U(100) metal required in each array unit to keep the 4×4×4 cubic array 
critical. Now, the multiplication factor can be calculated if one is interested in storing 20 kg 
U(100) metal units in each array location. The resulting multiplication factor is calculated 
below where m is the desired unit mass to be stored (20 kg) and m' is the calculated critical 
mass in the array as calculated above: 
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With 30 in. (76.2 cm) spacing between units, this array configuration will remain subcritical. 
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Graphical solution 
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Figure 30. Solution for Limiting Surface Density Example Problem 3 
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Note that the graphical solution (Figure 30) illustrates a solution for the array critical unit 
mass at about 34.3 kg, which corresponds to a limiting surface density of about 20 g/cm2. To 
verify the graphical solution, the following calculation can be done. 
 

  

The stack surface density is given as: !
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and the limiting surface density is: !
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which matches the value derived from Figure 30.
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7.4.4 Limiting Surface Density Example Problem 4 

 
Using the limiting surface density method, repeat the example problem in Section 
7.4.3 (Limiting Surface Density Example Problem 3) for 5 kg Pu(5.2) metal array 
units. Recall that the array considered in Section 7.4.3 contained U(100) metal 
units. 
 
Non-graphical solution: 
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where 
 
mo – 10.336 kg (Table 14), 
n – 4 from the assumptions specified above, 
an – 15 in. from the assumptions specified above, 
c2 – 0.004138 cm–2 (Table 14), 
N – equal to n3 = 64, and 
c – 0.55, defined previously. 
 
Substituting the values for each variable into the array critical mass relationship provides 
the following result: 
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This is the mass of Pu(5.2) metal required in each array unit to keep the 4×4×4 cubic array 
critical at a center-to-center spacing of 30 in. (76.2 cm). Note that this critical mass is 
significantly lower than the U(100) metal system in the last example problem. 
 
Now, the multiplication factor can be calculated if one is interested in storing 5 kg Pu(5.2) 
metal units in each array location. The resulting multiplication factor is calculated below 
where m is the desired unit to be stored (5 kg) and m' is the calculated critical mass in the 
array as calculated above: 
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Storing 5 kg Pu(5.2) metal units in a 4×4×4 array with about 30 in. (76.2 cm) spacing 
between array units is subcritical under normal conditions. 
 
Graphical Solution 

   
Notice that the array geometry is unchanged from the last example problem. For comparison 
purposes, the final plot will include the data from the last example problem to illustrate the 
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change to the system when the array units are Pu(5.2) metal instead of U(100) metal while 
keeping the array geometrical configuration constant. 
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Equating the geometrical and material relationships results in the following:
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Figure 31. Solution for Limiting Surface Density Example Problem 4 
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Note that the graphical solution (Figure 31) illustrates a solution for the array critical unit 
mass at about 9 kg (illustrated by the M2 line in the plot), which corresponds to a limiting 
surface density of about 5.4 g/cm2. This plot clearly shows how much more reactive Pu(5.2) 
metal is compared to U(100) metal as demonstrated by the much lower array unit mass 
required to result in about the same multiplication factor, keeping the array geometry 
constant. 
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7.4.5 Limiting Surface Density Example Problem 5 

 
Based on the results of the last example problem in Section 7.4.4 (Limiting Surface 
Density Example Problem 4), calculate the required array unit mass that results in 
a multiplication factor of 0.9 using the same limiting surface density relationships. 
Recall that the array considered in Section 7.4.4 contained Pu(5.2) metal array 
units. 
 
The first step for this problem is to calculate the mass required for this array to have a 
multiplication factor of 0.9 as follows. 
 

  

Use the multiplication factor relationship to solve for the mass, m, that will result in the mass

of a Pu unit in the array and that will result in a multiplication factor of 0.9.  

k
eff

=
m

m '

!

"#
$

%&

1

3

m

m '
= k

eff

3

m = m ' k
eff

3

m = 9.03 ' 0.9( )
3

= 6.58 kg.

 

 
The critical mass relationship from the last example problem can be modified algebraically to 
solve for the center-to-center spacing between array units. The modifications are shown 
below and recall the critical mass for each array unit is 9.03 kg from the last example 
problem. 
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7.5 The Equivalence of Different Fissile Units in Water-Reflected Arrays 

 
Units of different fissile material or of different reactivity may be defined as equivalent when a 

substitution of units in a reflected array does not produce a change in the array multiplication factor 
(Reference 25). This array condition will be true if the following is true. 

 

  

! (m)

m

=
! ( "m )

"m

.  

 
In this relationship, the variables m and m´ represent the different masses or different materials 

in the same array configuration (i.e., an, N and nz represent the geometrical configuration of the 
array, which do not change). One can derive an equivalence relationship for this situation as follows. 
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    Substitute these expressions into the "equivalence relationship":
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    Again, because the geometrical characteristics for this situation do not change, the variables 
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, and N  do not change.  Thus, this relationship can be simplified in the following two steps:
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    Solve for the new critical unit mass, !m :
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Thus, this relationship can be used to consider an “equivalent” mass of a different fissile material 

in order to maintain criticality of the array.   
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7.5.1 Limiting Surface Density Example Problem 6 

 
Use the equivalence relationship derived in Section 7.5 to confirm the results of 
the example problem from Section 7.4.4 (Limiting Surface Density Example 
Problem 4). 
 
The values for the characteristic constants, c2 and c2’ and the bare, spherical critical masses 
can be found in Table 14.   
 
mo´ – 10.34 kg for Pu(5.2) metal, 
c2´ – 4.136×10–3 cm–2 for Pu(5.2) metal, 
m – 34.30 kg for U(100) metal (result from example problem in Section 7.4.3), 
mo – 45.68 kg for U(100) metal and 
c2 – 1.806×10–3 cm–2 for U(100) metal. 
 

  

The equivalence relationship from Section 7.5 can be used to find the equivalent mass of Pu(5.2)

in the critical 4 ! 4 ! 4 array of U(100) metal units:
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*

+
,
,
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.
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/

#1

"m = 9.03 kg.

 
This is the same critical mass as calculated in Section 7.4.4, which represents the mass of 
Pu(5.2) metal units that would be required to maintain criticality of the 4x4x4 array. Using 
the equivalence relationship, the analyst can calculate the equivalent mass needed for a 
critical array keeping all of the geometrical characteristics of the array constant. 
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7.6 The Effect of Array Shape (Non-cubic Arrays) on Array Criticality 

 
So far, the discussions about the limiting surface density method have focused on cubic arrays 

that have at least 64 units, corresponding to at least a 4×4×4 array. This method can also be used for 
arrays that may be cuboidal in shape instead of cubic. In other words, the 4×4×4 array can be 
transformed to allow the analyst to determine the characteristics of a critical array with the same 
number of units that has a different shape or layout such as a 16×2×2 or an 8×4×2 array (Figure 32). 
It is somewhat intuitive that a cubic array with a certain number of units will be more reactive than 
a non-cubic or cuboidal array with the same number of fissile units. The non-cubic array is less 
reactive than the cubic array because the neutron leakage increases. To maintain criticality, either 
the unit mass must increase, the distance between units be reduced or the number of units in the 
array be increased.   

 
The limiting surface density method can be applied to non-cubic arrays (cuboidal) simply by using 

a shape factor to adjust the slope of the material line, –c2, to account for the neutron leakage 
characteristics of the transformed array. Once the array is adjusted for a new configuration, a 4×4×4 
array to an 8×4×2 array, for example (Figure 32), the new array parameters can be adjusted to 
determine the characteristics for a critical array of this new size. The approach provided here, as 
defined in Reference 25, can be used to make adjustments to the array shape. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 32. Illustration of Two Different 64-Unit Arrays 
 

In most facilities that have fissile material operations, it is much more common to experience 
storage arrays that are not cubic but non-cubic in shape as illustrated in Figure 32. Furthermore, in 
a process facility, arrays are usually made up of drums of fissile material stored on the floor or on 
pallets in arrays, for example, and not of ideal, compact arrangements such as those shown in this 
section. However, ideally, to account for an array change of shape from a cubic to non-cubic 
arrangement, the ratio of the surface to volume ratio for the array shape change can be calculated to 
determine a shape factor, R, to use in subsequent calculations in order to determine the new 
characteristics the units in the new array must have to remain in a critical configuration. The shape 
factor, R, is defined as follows. 

 

4x4x4 Array 8x4x2 Array 
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    The surface area for a noncubic array can be calculated by the following where n
x
,  n

y
, and n

z

represent the number of array units/cells in the x,  y,  and z directions, respectively:
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    Now, calculate the surface-area-to-volume ratio for the non-cubic array:
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    For a cubic array, the surface-area-to-volume ratio where n is equal for each side of the

array (recall that N = n3  or n = N
3

) is given by:
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    Now, the shape factor, R, can be defined as

R +

S
nc

V
nc

%

&
'

(

)
*

S
c

V
c

%

&
'

(

)
*

=
N

3

3

1

n
x

+
1

n
y

+
1

n
z

%

&
''

(

)
**

.

 

 
It should be noted that N is independent of the array shape and does not have to be an integer 

value. According to Reference 16, the maximum value that R can have is 5.34. Calculationally, if R 
exceeds this value, it should be assigned a value of 5.34. This limitation is required to avoid 
criticality with a single unit of the array.  
 

Now that the new shape of the array has been accounted for, c´2 can be calculated that accounts 
for the increased neutron leakage for the non-cubic array. The following relationship was developed 
by Thomas (Reference 25) to account for the new leakage characteristics for the modified, non-cubic 
array that is valid for U(93.2) metal units, each having a mass of 10.42 kg. 
 

  

!c
2
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4 !n
z

n
z

c
2

5R
–0.672 "1

#

$
%

&

'
( ,

where !n
z
 is the least number of units along an array edge, which is equal to N

3
 or n

z  
in the 

noncubic array configuration, R is the shape factor (not to exceed 5.34), and  c
2
 are previously 

defined.   

 

 
This relationship was developed for 10.4 kg, U(93.2) metal units in a 512-unit array (Reference 

16) and can be used in conjunction with the equivalence relationship derived in Section 7.5 to convert 
from one type of fissile material to another after this step is complete. 
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7.6.1 Limiting Surface Density Example Problem 7 

 
Repeat the example problem in Section 7.4.3 for an 8×4×2 array, using the 
methodology presented in Section 7.6. Recall that the array considered in Section 
7.4.3 contained U(100) metal units. 
 
As discussed in Section 7.6, the first step is to calculate the critical array unit mass for 
U(93.2) metal units arranged in a cubic arrangement. After this is done, the shape factor, R, 
can be calculated to determine the critical array unit mass for the 8×4×2 array for the 
U(93.2) metal units. The last step will involve using the equivalence relationship from 
Section 7.5 to determine the critical array unit mass for U(100) metal units. A calculation of 
this type must be done in these steps because the limiting surface density was developed 
based on experiments involving arrays of U(93.2) metal units. This solution will involve the 
graphical solution done previously. 
 
Step 1 
 
Assume a 4×4×4 cubic array: 

• n = nx = ny = nz = 4  

• an = ax = ay = az = 15 in. (38.1 cm). 

The following relationship for a cubic array can be used to determine the critical mass per 
unit in order to maintain the array in a critical condition for U(93.2) metal units. Array 
information for U(93.2) metal and other relevant data are as follows: 
 
mo – 52.1 kg from Table 14,  
c2 – 0.001762 cm–2 from Table 14, 
N – equal to n3 = 64, and 
c – 0.55. 
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Equating the geometrical and material relationships results in the following:

! (m)

m
= 5.974 "10#4

=1.762"10#3 52.1

m
#1

$

%&
'

()

m = 38.9 kg.

 

 

 
Figure 33. Solution for the U(93.2) metal 4×4×4 Array 

 
Note that the graphical solution (Figure 33) illustrates a solution for the array critical unit 
mass at about 39.5 kg, which corresponds to a limiting surface density of about 23 g/cm2. 

 
Step 2 
 
The next step is to compute the shape factor and determine c2´ that considers the increased 
leakage due to changing the shape of the array from a cubic (4×4×4) to non-cubic in shape 
(8×4×2).   

 

  

The shape factor, R, can be calculated as follows:
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With R calculated, !c
2
 can be calculated from this relationship from Section 7.6:
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Because the geometric characteristics of the array have changed, σ(m) can be calculated by 
taking the ratio of the limiting surface density relationships before and after the array 
transformation was made. 
 

  

The ratio of the limiting surface density relationships can be calculated as follows.  Note 

that the variables a
n
, m

0
 and N  do not change.  The unit spacing, fissile material type and 

number of units in the array are the same before and after the transformation from a 

4 ! 4 ! 4 array to an 8 ! 4 ! 2 array:

n
z

(2a
n
)2

1 "
c

N

#
$
%

&%

'
(
%

)%

2

*n
z

(2a
n
)2

1 "
c

N

#
$
%

&%

'
(
%

)%

2
=

c
2

m
o

m
"1

#
$
%

&%

'
(
%

)%

c
2
* m

o

*m
"1

#
$
%

&%

'
(
%

)%

.

The simplified relationship is as follows:
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Solve for the new critical unit mass, *m :
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This corresponds to the mass of U(93.2) metal units required to keep the 8×4×2 array in a 
critical state after the array was transformed from a 4×4×4 array (Figure 34).  
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Figure 34. Transformation of a U(93.2) Metal 4x4x4 Array to an 8×4×2 Array 
 
Now the equivalence relationship derived in Section 7.5 can be used to determine the unit 
mass for U(100) metal units to maintain the 8×4×2 array in a critical state based on the 
results for a U(93.2) metal system. First, the c2 value for U(100) metal needs to be calculated 
because the data that will be used from Table 14 apply to cubic arrays, not a cuboidal, 8×4×2, 
array. The following approach can be taken to calculate c2 for the 8×4×2 array of U(100) 
metal units. 
 

  

The ratio of the limiting surface density relationships can be calculated as follows.  Note that 
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Calculating the ratio of these two relationships results in the following:
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Because the geometric properties of the array will not change for the fissile material 

transformation from U(93.2) to U(100) metal units, the previous relationship can be 

simplified to the following ratio of c
2
 values.
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Rearranging the ratio provides the following result that can be used to calculate the c
2

value for the U(100) 8 ! 4 ! 2 array:
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The mass required to maintain criticality of the 8×4×2 array with U(100) metal units can 
now be determined using the equivalence relationship defined previously. 
 

  

The equivalence relationship from Section 7.5 is defined as
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Substitute the relevant variable values:

m
0
! = 45.68 kg  for U(100) metal with H/U = 0 (Table 14),

c
2
! =1.030 "10#3  cm2  for U(100) metal with H/U=0 for the 8 " 4 " 2 array, calculated above,

m = 40.16 kg  corresponding to the critical unit mass for U(93.2) metal units calculated previously,

c
2
=1.762"10#3  cm2  for U(93.2) metal (Table 14), and

m
0
= 52.1 kg  for U(93.2) metal from the last step.

The final result is:

!m = 45.68 kg
1.005 "10#3  cm2
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= 35.41 kg.

 
This is the mass required to maintain array criticality in an 8×4×2 configuration with U(100) 
metal units. The graphical solution is illustrated in Figure 35.   

 

 
Figure 35. Graphical Solution for an 8×4×2 Array with U(100) Metal Units  
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7.6.2 Limiting Surface Density Example Problem 8 

 
This problem will be split into several parts to demonstrate the strength of the 
limiting surface density method for array analyses. 
 
Part 1. Using the limiting surface density method, calculate the spherical critical 
mass of U(93.2) metal required for criticality in a 216-unit water-reflected cubic 
array. The center-to-center spacing (2an) of the array units is 38.1 cm.   
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Equating the geometrical and material relationships results in the following:
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m =16.4 kg         

This result is consistent with the graphical solution as shown in Figure 36.
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Figure 36. Solution for Limiting Surface Density Example Problem 6 

 
 
Part 2. What would be the multiplication factor of this array if the units were 
rearranged into a water-reflected 9×24×1 cuboidal array? 
 
The first step is to compute the shape factor and determine c2´ and new value for σ´ (m)/m 
that considers the increased neutron leakage due to changing the shape of the array from a 
cubic (6×6×6) to non-cubic in shape (24×9×1). Using the methodology from Section 7.6 and the 
example problem in Section 7.6.1, the multiplication factor can be calculated. 

 

  

The shape factor, R, can be calculated as follows:

R =
N

3

3

1

n
x

+
1

n
y

+
1

n
z

!

"
##

$

%
&&

R =
216

3

3

1

24
+

1

9
+

1

1

!

"#
$

%&
= 2.306.

 

 



133 

  

With R calculated, !c
2
 can be calculated from this relationship from Section 7.6:

!c
2
=

4 !n
z

n
z

c
2

5R
"0.672 "1

#

$
%

&

'
(

!c
2
=

4 )1

6

1.762)10"3

5 2.306( )
"0.672

"1

#

$

%
%

&

'

(
( = 6.343 )10"4.

 

 
Now, calculate the value for σ´(m)/m so that the new array unit critical mass, m´, can be 
calculated, which can be related to the multiplication factor relationships defined in Section 
7.3.1.   
 

  

! ( "m )

"m
=

n
z

n

! (m)

m

! ( "m )

"m
=

1

6
3.83 #10$3  

kg

cm2

%

&'
(

)*
= 6.383 #10$4  

kg

cm2
.

Substitute this value into the limiting surface density (material line):

! ( "m )

"m
= c

2
" m

0

"m
$1

%

&
'

(

)
* = 6.383 #10$4.

 

 

  

The type of fissile material in the array units have not changed.  Therefore, m
0
= 52.1 kg.

Solve for !m :

!m =
c

2
!m

0

6.383 "10#4  cm–2
+ c

2
!

$

%
&
&

'

(
)
)

!m =
6.343 "10#4  cm–2 "  52.1 kg

6.383 "10#4  cm–2
+ 6.343 "10#4  cm-2

$

%
&

'

(
) = 26.0 kg.

This is consistent with the graphical solution shown in Figure 37.
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Figure 37. Solution for the Change from a 6×6×6 Array to a 9×24×1 Array 

 
 

The multiplication factor can now be calculated using the relationships in Section 7.3.1.   
 

  

k
eff

=
m

!m

"

#$
%

&'

1

3

=
16.4

26.0

"

#$
%

&'

1

3

k
eff

= 0.86.

 

 
Part 3.  What 239Pu metal (Pu[0]) mass will result in an array multiplication factor 
of 0.9 for the 6×6×6 and 9×24×1 arrays?  
 
This part involves a different type of fissile material than in the last two parts of the 
problem, a pure 239Pu metal system, so one can therefore proceed as in Part 1 for each array 
type. For the 6×6×6 array, the critical array unit mass can be calculated as before, using the 
data from Table 14 for Pu(0) metal. 
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Geometry Line:  

! (m) =
n

z
m

(2a
n
)2

1 "
c

N

#

$
%

&

'
(

2

=
6m

(38.1 cm)2
1 "

0.55

216

#

$
%

&

'
(

2

           

! (m) = 3.830 )10"3m     or     
! (m)

m
= 3.830 )10"3

Material Line:  

! (m) = c
2
(m

o
"m)

! (m) = 4.356 )10"3 9.95 "m( )      or     
! (m)

m
= 4.356 )10"3 9.95

m
"1

#

$%
&

'(

For this case, the geometry line is unchanged. The material line changes due because of 

the fissile material change.

Equating the geometrical and material relationships results in the following:

! (m)

m
= 3.830 )10"3

= 4.356 )10"3 9.95

m
"1

#

$%
&

'(

m = 5.29 kg.

This array unit mass corresponds to a critical array as shown in Figure 38.  
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Figure 38. Solution for Pu(0) metal 6x6x6 Critical Array 

 

  

The array unit mass needed to result in a k
eff

 of 0.9 and can be calculated as follows:

k
eff

=
m

!m

"

#$
%

&'

1

3

.   

Rearrange this equation to solve for m,  and recall that m is the mass of a spherical unit 

in the subcritical array while !m  is the mass of a spherical unit in a critical array:

!m = mk
eff

3
= 5.29 kg( ) 0.9( )

3

= 3.86 kg.

 

 
Thus, for the 6×6×6 array, units of 3.86 kg Pu(0) metal array units will result in a keff of 0.9. 
 
For the 9×24×1 array, the calculations in Part 2 can be used in this problem to calculate a 
new value of c2 for this Pu(0) system by using a similar equivalence methodology presented 
in Section 7.5. The calculation in Part 2 involved the calculation of the shape factor R and 
calculation of the critical array unit mass change from a 6×6×6 array to a 9×24×1 array. 
Thus, using the same approach discussed in Section 7.6, a relationship can be derived to 
determine a new c2 for the 9×24×1 array for a Pu(0) metal system.   
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The ratio of the limiting surface density relationships can be calculated as follows. Note that 

the variables a
n
,  m

0
,   n

z
,  c,  and N  do not change. The unit spacing, fissile material type and 

number of units in the array are the same before and after the transformation from a 6 ! 6 ! 6 

to an 9 ! 24 !1 array.

For the U(93.2) array:

c
2
"( )

9!24!1
U (93.2)

=
4 "n

z

n
z

c
2( )

6!6!6
U (93.2)

5R
#0.672 #1

$

%

&
&
&
&

'

(

)
)
)
)

For the Pu(0) array:

c
2
"( )

9!24!1
Pu(0)

=
4 "n

z

n
z

c
2( )

6!6!6
Pu(0)

5R
#0.672 #1

$

%

&
&
&
&

'

(

)
)
)
)

 

  

The simplified relationship:

c
2
!( )

9"24"1
U (93.2)

c
2
!( )

9"24"1
Pu(0)

=

c
2( )6"6"6

U (93.2)

c
2( )6"6"6

Pu(0)

Solve for c
2
!( )

9x24x1
Pu(0)

:

c
2
!( )

9"24"1
Pu(0)

=

c
2
!( )

6"6"6
Pu(0)

c
2
!( )

6"6"6
U (93.2)

#

$

%
%
%
%

&

'

(
(
(
(

c
2( )9"24"1

U (93.2)

=
4.356 "10)3

cm
–2

1.762"10)3  cm
–2

#

$
%

&

'
( 6.343 "10)4  cm

–2( )

c
2
!( )

9"24"1
Pu(0)

=1.568 "10)3
cm

–2.

 

 
Based on the fact that the value for σ(m)/m is constant for the 9×24×1 array calculation in 
Part 2, the new c2 value can be used to calculate the critical array mass (Figure 39) for the 
9×24×1 array for the Pu(0) metal system: 
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The material line can be written as:  c
2
!( )

9"24"1
Pu(0)

m
0

!m
#1

$

%
&

'

(
) = 6.383 "10#4

The geometry line for a 9 " 24 "1 array is 
* (m)

m
= 6.383 "10#4 :

Equating the material and geometry lines and solving for !m :

1.568 "10#3  cm–2( ) 9.95( ) # 1.568 "10#3( ) !m = 6.383 "10#4( ) !m

!m =
1.568 "10#3  cm–2( ) 9.95 kg( )

6.383 "10#4  cm–2
+1.568 "10#3  cm–2( )

= 7.07 kg.

 

 

 
Figure 39. Solution for a Pu(0) Metal 9×24×1 Critical Array 

 

  

This mass corresponds to the array unit Pu(0) metal mass required to maintain the 9 ! 24 !1 

array in a critical state. The mass necessary to result in multiplication factor of 0.9 can now 

be calculated:

"m = mk
eff

3
= 7.07 kg( ) 0.9( )

3

= 5.15 kg.

 

 



139 

7.7 The Effect of Unit Shape on Array Criticality 

 
The limiting surface density method was derived for cubic arrays of U(93.2) metal spheres. If the 

shape of the fissile units in the cubic array were changed to a cylindrical geometry, as the height-to-
diameter (H/D) ratio changes, the value for mo or the unreflected critical mass for the fissile 
material changes due to an increase or decrease in neutron leakage. However, over a very well 
defined H/D range, 0.3≤ H/D ≤3, the limiting surface density method will apply. Outside of this 
H/D range, more than one line segment may be necessary to describe the limiting surface density 
over a wide range of unit masses. In other words, more than one value for the characteristic 
constant, c2, is necessary to provide an accurate representation of the array unit mass or limiting 
surface density. In this case, data for c2 representing the array unit shapes, outside of the previously 
specified range, may not be available and may need to be calculated using the relationship σ(m) = 
c2(mo-m), as discussed in Reference 25. However, as the Figure 40 shows, a conservative estimate of 
the critical or subcritical unit mass can be made by assuming that the material line is straight from 
σ(0) to the intercept of the x-axis, which corresponds to the green, dashed line in the figure.  

 
For example, for an H/D ratio of 1.0, which falls in the range of applicability of the limiting 

surface density method as discussed above, provides an estimate for the critical unit array mass at 
approximately 44 kg of U(93.2) metal. This critical unit array mass increases to about 75 kg to 
maintain the array at a critical state for an H/D of 0.3 (also within range of applicability), which is 
due to the significant increase in the neutron leakage for the array. Outside the range of 
applicability, an array of U(93.2) metal cylinders with an H/D of 0.2 does not result in a linear 
relationship between the unit mass and the limiting surface density. As Figure 40 shows, the two 
material lines are needed to describe this system with each line having its own characteristic 
constant (slope), c2, value. Unless the c2 value (noted in Figure 40 as c2´) for segment #2 for the H/D 
of 0.2, is calculated via the Thomas methodology (Reference 25), the analyst may be stuck. However, 
because the experimental data slopes upward to the ordinate for the H/D = 0.2 case, a line can be 
extended from segment #1 to the abscissa (green dashed line corresponding to segment #1), and the 
intersection of this material line “extension” with the geometry line can be used as a conservative 
value of the array unit mass for a subcritical array. For the U(93.2) metal cylinders shown in Figure 
40, the conservative array unit mass, indicated by the “red dot,” is about 87 kg. If c2´ were known, 
the actual intersection of the material (segment #2) and geometry lines would result in a critical 
array unit mass of about 98 kg, as shown by the yellow dot.   
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Figure 40. Critical Water-Reflected Cubic Arrays of U(93.2) Metal Cylinders 

with Various Height-to-Diameter Ratios 
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7.8 Effect of a Fissile Unit Density Change 

 
The effect of a density change of array units can be determined by a simple calculation to 

determine a new value of the characteristic constant, c2, corresponding to the array unit density 
change. For example, the limiting surface density method can be used to determine the critical array 
characteristics for a storage array of alpha-phase plutonium ingots (ρ = 19.75 g/cm3) that were 
replaced with delta-phase plutonium ingots (ρ = 15.75 g/cm3). The core density conversion from 
Chapter 4 can be used to determine the new value for c2 as a result of the density change: 
 

  

m
0

m
0
!
=

!"
"

#

$%
&

'(

2

,

where m
0
!  and !"  represent the unreflected critical mass and density, respectively, for the new fissile 

material shape, and m
0
 and " represent the unreflected critical mass and density for the original,

spherical unit.

    Then, noting that for the spherical and different shape, the limiting surface density where m = 0, ) (0) 

is equal for both cases:  

) (0) = ) (0 !) = c
2
m

0
= c

2
!m
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!.

Solving for the new characteristic constant, c
2
! ,
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2

=
m

0
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=
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#
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&

'(

2

.

 
A simple change in unit density does not result in any other change to the array as long as the 

unit cell volume remains constant. That is, the geometry line for the array in invariant, whereas the 
material line changes along with the density change. The effect of a change in the characteristic 
constant, c2 to c2’, will result in a corresponding shift in the array unit mass required to maintain a 
critical array. For a reduction in the density of the fissile material, common sense concludes that the 
array unit fissile mass must increase for the array to maintain a critical state. Likewise, if the 
density of the fissile material increases, the array unit mass is shifted lower to maintain criticality of 
the array.  
 

To determine the new fissile array unit mass needed to obtain a critical array configuration at a 
lower fissile density, the “equivalence relationship” from Section 7.5 can be used to compare the NBn2 
parameters for two critical arrays. The ratio of the limiting surface density relationships can be 
calculated as follows. Note that the variables an, mo and N do not change. The unit spacing, fissile 
material type and number of units in the array are the same before and after the transformation 
from array units with density ρ to ρ’.  
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    Simplifying this relationship results in the following:
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    These simplifications yield equation 7 of Reference 25 which relates different critical arrays and

fissile materials, including changes to the fissile material density.
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    Recall that: 
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. Substituting this ratio into the previous relationship and, after some 

simplification, results in the following, final equation for the resulting fissile unit mass, )m , that results

in a critical array after the density change. This equation is equation 19 in Reference 25. 
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This is a very useful equation that shows how the array unit mass, center-to-center spacing or 

total number of units needs to change to maintain a critical array configuration. Only changes to the 
fissile array unit mass necessary to maintain a critical array due to a change in fissile material 
density is examined in detail here. 
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    Notice that for only a fissile material density change in the array, only the material properties

of the array will change. The physical characteristics of array (N ,  !N ,  a
n
,  !a

n
,  n

z
 and !n

z
) will 

remain constant. Thus, 
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2

=1.

    Substitute this result into the equation and solve for !m . This relationship shows that the mass

required to maintain the array in a critical state increases for a reduction in the fissile material

density and decreases when the density is increased. These trends are illustrated in Figure 41.
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    Reference 25 provides additional information about fissile material density changes in array

configurations.

 

 

 
Figure 41. Density Change in a Critical 4×4×4 Array with U(100) Metal Units 
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7.8.1 Limiting Surface Density Example Problem 9 

 
Repeat the example problem in Section 7.4.3 (limiting surface density example 
problem 3) for a density change from 18.9 g/cm3 to 15 g/cm3. Recall that Section 
7.4.3 considered an array that contained U(100) metal units. 
 

  

From Reference 25, the critical array unit fissile mass of an array that has an array unit density 

change can be determined by the following relationship:
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Notice that a
n
,  !a

n
, n

z
, !n ,  N , and !N  depend upon the geometric array characteristics only. 

Because the geometrical characteristics of the array are unchanged, the term on the right is 

equal to unity, and the relationship can be solved for the new critical array unit mass after the 

fissile unit density change:
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Next, substitute the unreflected critical mass, m
0
,  the critical mass for the initial density, m,  

(m = 34.3 kg  from the results from Section 7.4.3) and the initial and final fissile material 

densities, " and !" ,  respectfully, as follows:

!m = 34.3 kg
34.3 kg

45.686 kg

15 g/cm3

18.9 g/cm3

#
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2

+ 1 )
34.3 kg

45.686 kg

#

$%
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+

,
,

-

.

/
/

–1

,

!m = 47.5 kg.

Figure 42 illustrates this solution.
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Figure 42. Solution for Limiting Surface Density Example Problem 9 

 

7.8.2 Concrete Reflected Arrays 

 
The limiting surface density method was developed for water-reflected arrays of U(93.2) metal 

units. For various situations, such as one involving a concrete storage vault, it may be more 
appropriate to consider concrete reflection instead. Depending upon the thickness of concrete 
considered in the analysis, this may result in a reduction or increase in the array unit mass that is 
required to maintain the array in a critical state. The magnitude of the increase or decrease in the 
reactivity of an array with respect to changing the assumed reflector from water to concrete depends 
upon the overall shape of the array and the type of fissile material present in the array. Thomas 
(Reference 25) has calculated the characteristic constant, c2, for various thicknesses of concrete based 
on Monte Carlo calculations with a 216-unit array of 9 kg U(93.2) metal units with a center-to-center 
spacing of 12.835 cm. Thomas replaced the water reflector with concrete of various thicknesses and 
documented the results in Reference 25, Table 7. This table also provides the characteristic constant, 
c2, for each thickness of concrete. Using the value of c2 for the water reflected U(93.2) metal units 
(1.762×10–3 cm–2 from Table 14), the ratio of c2 for concrete and water can be calculated for each 
concrete thickness. These ratios are listed in Table 15. Reference 25 provides a c2 value for a similar 
array of Pu(94.8) metal units.   
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Table 15. Comparison of U(93.2) Metal Arrays with Water and Concrete Reflectors  
 

Concrete 
Thickness 

(cm) 

c2 for the 216-unit 
U(93.2) Metal Units 
Reflected by This 

Thickness of Concrete 
(×10–3 cm-2) 

c2 for the 216-unit 
U(93.2) Metal Units 
Reflected by Water  

(×10–3 cm-2) 

Ratio of c2 for 
Concrete and Water, 

  

c
2
(concrete)

c
2
(water)

 

10.16 2.007 1.139 
12.70 1.694 0.961 
15.24 1.432 0.813 
20.32 1.240 0.704 
25.40 1.156 0.656 
30.48 1.128 0.640 

30.48 for Pu(94.8) 3.050 1.333 
40.64 1.085 

1.762 

0.616 
 
Using the relationships defined in Section 7.5, the characteristic constant for other fissile 

materials can be calculated. The neutronic characteristics for concrete can vary a great deal 
(Reference 28) based, primarily, on the water content of the concrete. Thomas used Oak Ridge 
concrete for the c2 calculations listed in Table 15. Oak Ridge concrete has a water content of about 
5.53 weight percent, where the water content ranges from 2.97 for Magnuson concrete to 10.99 
weight percent for Hanford concrete (Reference 28). The water content of the various types on 
concrete should be considered before the Table 15 data are used in a calculation, if this information 
is known.  
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7.8.3 Limiting Surface Density Example Problem 10 

 
Calculate the critical mass for each array unit required for the water-reflected 
cubic array from the limiting surface density example problem 3 (Section 7.4.3) for 
fully enriched U(100) metal, assuming 30.48 cm (12 in.) of concrete reflection 
instead of 20 cm (7.87 in.) of water reflection. Assume that the concrete is the Oak 
Ridge mixture. 

 
The limiting surface density method assumes a 200 mm (20 cm) thick water reflected array 
(Section 7.3). For this concrete reflected array (30.48 cm thick), the change from a water (20 
cm thick) to a concreted reflected array results in a change in the array unit mass required to 
maintain array criticality. 

 
Non-graphical solution 
 
Assume a 4×4×4 cubic array: 

• n = nx = ny = nz = 4  

• an = ax = ay = az = 15 in. (38.1 cm) 

 
The following variables were defined in Section 7.4.3; however, the value for c2 will have to 
be adjusted for a reflector change from water to concrete: 
 
mo – 45.686 kg from Table 14,  
nz – 4 from the assumptions specified above, 
an – 15 in. (38.1 cm) from the assumptions specified above, 
c2 – 1.806×10–3 cm–2 from Table 14 for U(100) metal for a 12 in. thick water 

reflector, 
N – equal to n3 = 64, and 
c – 0.55, defined previously. 
 
Before the mass is calculated, determine c2´ corresponding to the concrete reflected array. 
 

  

From Table 15, the c
2
 concrete-to-water ratio for 12 in. of Oak Ridge concrete reflection is 

0.640:

c
2
(concrete)

c
2
(water)

= 0.640

or

c
2
(concrete) = 0.640 ! c

2
(water)

c
2
(concrete) = 0.640 !1.806 !10–3  cm

–2
=1.156 !10–3  cm

–2.

 

 
Substituting the values for each variable into the array critical mass relationship provides 
the following result: 
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)
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*

+

,
-
-

2

+1

(

)

*
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+

,

-
-

!1

m = 30.1 kg.

 

 
This is the mass of U(100) metal required in each array unit to keep the 4×4×4 cubic array 
critical, which is about 5 kg less U(100) metal per array unit because of the change from a 12 
in. water reflector to a 12 in. concrete reflector. Now, the multiplication factor can be 
calculated if one is interested in storing 20 kg U(100) metal units in each array location. The 
resulting multiplication factor is calculated below where m is the desired unit to be stored 
(20 kg) and m' is the calculated critical mass in the array as calculated above: 

 

  

k
eff

=
m

!m

"

#$
%

&'

1

3

=
20

30.1

"

#$
%

&'

1

3

= 0.87.  

 
With 1-ft spacing between units, this array configuration will remain subcritical, although 
the multiplication is about 3% higher for a concrete reflected system. 
 
Graphical Solution 

   

  

Geometry Line:  

! (m) =
n

z
m

(2a
n
)2

1 "
c

N

#

$
%

&

'
(

2

=
4m

(2) 38.1 cm)2
1 "

0.55

64

#

$
%

&

'
(

2

           

! (m) = 5.974 )10"4
m     or     

! (m)

m
= 5.974 )10"4

Material Line:  

! (m) = c
2
(concrete)(m

o
"m)

! (m) =1.156 )10"3 45.686 "m( )      or     
! (m)

m
=1.156 )10"3 45.686

m
"1

#

$%
&

'(

Equating the geometrical and material relationships results in the following:

! (m)

m
= 5.974 )10"4

=1.156 )10"3 45.686

m
"1

#

$%
&

'(
.
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Figure 43. Solution for Limiting Surface Density Example Problem 10 

 
Note that the graphical solution (Figure 43) illustrates a solution for the array critical unit mass at 
about 30 kg, which corresponds to a limiting surface density of about 17 g/cm2. 
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8. Solid Angle Method 
 

8.1 What You Will Be Able to Do 

 

• Determine the total solid angle for a small number of moderated fissile units arranged in an 
array configuration 

• Based on solid angle restrictions for an array, calculate the minimum spacing that 
moderated fissile units can have in an array configuration 

8.2 Solid Angle Method Overview 

 
This method is a technique that has been around for many years. The basic idea behind this 

method is that the multiplication factor for fissile materials in an array configuration depends upon 
the multiplication factor for a single, representative fissile unit in an array and the probability that a 
neutron will leak out of this fissile unit and intersect another unit, which can increase the overall 
multiplication factor for the array system. The probability that a neutron leaks out of a fissile unit to 
intersect another is dependent upon the solid angle occupied at the most central unit by all the other 
units of the array (Reference 9).   
 

This technique has developed by accumulating a great deal of experimental data in aqueous 
solutions and the developing of a correlation that is dependent upon the reactivity of the individual 
units in the array and the maximum sold angle subtended at the central fissile unit by the other 
fissile units in the array. References 5, 13, 15, 34, and 35 provide additional information about the 
development of this method for use in array calculations. 
 

The critical data used to develop this method resulted in the following correlation for use in array 
calculations: 
 

  
!

allowable
= 9 "10k

eff
.  

 
The variable Ωallowable represents the allowable solid angle that may be subtended at the center 

fissile unit of the array, and the multiplication factor, keff, is the effective multiplication factor for an 
unreflected fissile unit in the array. This relationship has been shown to be acceptable for different 
array configurations and fissile materials. Figure 44 illustrates the allowable solid angle as a 
function of the multiplication factor for the array units under consideration. 
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Figure 44. Applicability of Solid Angle Method (Ωallowable = 9-10keff) 

 
The solid angle between array units is calculated using the applicable method from Table 16. 

These methods consider the solid angle between a point and various shapes (e.g., arbitrary shape, 
disks, cylinders, spheres, planes, etc.). The point, P, in the figures is meant to represent the center-
most unit of the array. Using these methods for each unit in the array, the total solid angle 
subtended at this center-most unit, P, is simply the sum of each of the solid angle contributions from 
the array units. Table 16 includes the most common formulae for use in this primer. More 
complicated situations such as determining the solid angle between the centermost array unit and 
an offset cylinder, plane or disk can be calculated using the guidance in Reference 13, Figure 4.2, and 
will not be included here. 
 
 

Acceptable 
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Table 16. Solid Angle Approximate Formulas (Reference 13) 
 

Point-to-Sphere Point-to-Cylinder Point-to-Arbitrary Shape 

 

 

 
 

 

  

! = 2" 1 #
1

1 + R H( )
2

$

%

&
&&

'

(

)
))

where

R = Radius of the sphere.

H=Distance from the point to the surface 

of the sphere.

   

! =
LD

H L 2( )
2

+ H
2

where

L=Length of the cylinder

D=Diameter of the cylinder

H=Distance from the point to the 

surface of the cylinder.

 
 

! =
Cross Sectional Area

H( )
2

 

Point-to-Plane Point-to-Disk 
 

 
 

 

 
 

  

! = sin
–1

AB

A
2

+ H
2

B
2

+ H
2

"

#$
%

&'

where

A=Length of one side of the plane

B=Length of the other side of the plane

H=Perpendicular distance from the 

point to the plane.

If the point, P , is directly above the center of the plane (not 

directly over a corner as shown in the figure) with dimensions 

2A ( 2B, multiply ! by 4 to obtain the solid angle.

 

  

! = 2" 1 #
1

1 + R H( )
2

$

%

&
&&

'

(

)
))
*
"R

2

H
2

where

R=Radius of the disk

H=Distance from the point P to the surface 

of the disk.
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8.3 Applicability for the Solid Angle Method 

 
There are some important points to consider when using this method. This method is applicable 

for the following situations and configurations. 
 

• This technique is applicable to small numbers of moderated fissile units. The 
experimental data used to develop this technique considered aqueous solutions. 

• Users wishing to apply this method to large arrays of metal or oxide systems with 
intermediate or fast neutron spectrum should be cautioned that the results obtained 
from the solid angle method can be non-conservative (Reference 13). 

• The multiplication factor, keff, of any unit should not exceed 0.80. 

• Each unit considered should be subcritical with thick water reflection. 

• The minimum separation distance between fissile units should be 0.3 m. 

• The allowed solid angle according to the method shall not exceed 6 steradians, and 

• The effectiveness of the reflector surrounding the array of fissile units should not be 
more effective than a thick water reflector located at the boundary of the array 
(Reference 13). The boundary location is no closer to the peripheral array units than 
about half of the edge-to-edge separation between fissile units. Concrete reflection on 
three sides can be considered bounded by this criterion. Guidance for more concrete 
reflection than is found in Reference 13. 

Figure 44 illustrates the applicability, as discussed above, for the solid angle method. A certain 
configuration of array units is safe if the solid angle subtended by the units of the array falls to the 
left and below the curve in Figure 44.   

 

8.4  Solid Angle Method Example Problems 

 
The example problems for the solid angle method will be included in a future revision of this 

document. The authors have decided to study the history behind the solid angle method in more 
detail to ensure that example problems provided are as accurate and practical as possible. 
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9. Establishing Confidence in Hand Calculation 
Methods 

 

9.1 Summary of Hand Calculation Results 

 
The purpose of this section is to summarize the results of each of the foregoing example problems 

in order to compare the results with experimental data, actual dimensions, MCNP or KENO 
calculations or a criticality safety handbook. The following sections break out the results and 
comparisons for each single unit and array method. This information can also be useful in some 
cases for the analyst to determine which method may be applicable to support criticality safety 
analyses for fissile material operations. 

9.2 Confidence in Single Unit Hand Calculations 

 
The example problem results presented in Chapters 1 through 4 along with the corresponding 

comparison results are summarized in Tables 17, 18, and 19.  
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Table 17.  Diffusion Theory Confidence Comparison 
 

Section Description of the Problem 
Hand Calculation 

Result 

Comparison Result 
from Reference or 

Code Package 

2.5.1 

A slab tank contains a mixture of water and pure 
239Pu with a 239Pu concentration of 100 grams per 
liter at 20 °C. Using modified one-group diffusion 
theory, estimate the critical slab thickness. 

13.04 cm 
14.2 cm 

(Ref. 5, Figure 
III.A.5.2) 

2.5.2 

It is proposed to store water solutions of uranyl 
sulfate (UO2SO4) with a concentration of 30 g 235U/l 
of the Sulfate. Assume the temperature of the 
solution is 20 °C, and the uranium is fully 
enriched. Part 2: Calculate the critical cylindrical 
tank radius using modified one-group diffusion 
theory. Part 3: Repeat part 2 if the enrichment was 
14.7 wt. % U-235 instead of fully enriched 
uranium. 

Part 2: 
17.5 cm 

 
 

Part 3: 
19.2 cm 

Part 2: 
~17.25 cm 
(MCNP5) 

 
Part 3: 
19.0 cm 

(DANTSYS) 

2.5.3 

Assume a fissile system made up of a bare sphere 
of Na and 239Pu in which Pu is 30 weight percent of 
the core mixture. Because this system has no 
moderating materials present, fast neutrons 
dominate the system (so one-group theory is 
sufficient). Part 1: Using one-group diffusion 
theory, estimate the critical radius for this system. 

161.6 cm ~161.3 cm 
(DANTSYS) 

2.5.4 

The Jezebel critical assembly used for experiments 
at Los Alamos was used to perform various critical 
experiments (see Figure 4).  Assume the assembly 
is made from δ-phase 239Pu (ρ = 15.45 g/cm3) and is 
an unreflected or bare system. Using one-group 
diffusion theory, estimate the spherical critical 
radius for this system with the three fissile pieces 
fully assembled. 

6.93 cm 
6.385 cm 

(Actual Dimension) 

2.5.5 

The Godiva critical assembly used for experiments 
at Los Alamos was employed in various critical 
experiments (see Figure 5).  Assume the assembly 
is made from 93% enriched 235U (ρ = 18.9 g/cm3) 
and is an unreflected or bare system.  Using one-
group diffusion theory, estimate the spherical 
critical radius for this system with the three fissile 
pieces fully assembled.   

8.44 cm 
8.6 cm 

(Actual Dimension) 

2.5.6 

Using one-group diffusion theory, determine the 
infinite multiplication factor and the critical mass 
of Pu for a spherical, unreflected configuration of 
239PuO2 with a density of 1, 3, 5, 7, 9, and 11.46 
g/cm3.  

1 g/cm3 – 4080 kg 
3 g/cm3 – 453 kg 
5 g/cm3 – 163 kg 
7 g/cm3 – 83 kg 
9 g/cm3 – 50 kg 

11.46 g/cm3 – 31 kg 

1 g/cm3 – 3522 kg 
3 g/cm3 – 391 kg 
5 g/cm3 – 141 kg 
7 g/cm3 – 72 kg 

9 g/cm3 – 43.5 kg 
11.46 g/cm3 – 26.8 kg 

(DANTSYS) 
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Table 18. Buckling Conversion Confidence Comparison 
 

Section Description of the Problem 
Hand 

Calculation 
Result 

Comparison 
Result from 

Reference or Code 
Package 

3.4.1 

Determine the critical solution height in the deep well 
for a Pu(5) concentration of 200 gPu/l for an unreflected 
system. (That is, neglect the effects of neutron 
reflection from the well steel or other materials in the 
vicinity of the solution.)  

18.5 cm 

15.24 cm 
(Ref. 5, Fig. 

III.A.5.95-3 for an 
infinite slab) 

3.4.2 
Calculate the water-reflected, critical radius for a 
cylindrical tank that has a height of 20 cm, filled with 
20 g/l Pu(5) metal-water mix.  

31.1 cm 
~32.3 cm 
(MCNP5) 

3.4.3 Calculate the critical height for a 15 cm diameter 
cylinder for the same solution from Section 3.4.2. 

This configuration will always remain 
subcritical. 

3.4.4 

Two cylindrical, unfavorable geometry tanks are being 
filled with a fissile solution. The first tank is filled with 
a U(93.5)-water mixture while the second tank is filled 
with a Pu metal-water mixture containing 5 wt. % 
240Pu. Both solutions have a fissile concentration of 100 
gU/l. Determine the critical solution height for each 
tank and compare the results of the two systems. 
Repeat this calculation with a concentration of 150 
gU/l.  

100 g/l: 
H=17.3 cm (U) 
H=19.1 cm (Pu) 

 
150 g/l: 

H=16.8 cm (U) 
H=19.0 cm (Pu) 

 

100 g/l: 
H≈17.8 cm (U) 
H≈18.8 cm (Pu) 

 
150 g/l: 

H≈16.5 cm (U) 
H≈18.6 cm (Pu)  

(SCALE5, Keno V.a) 

 
Table 19. Core-Density Method Confidence Comparison 

 

Section Description of the Problem 
Hand 

Calculation 
Result 

Comparison Result 
from Reference or 

Code Package 

4.4.1 

Calculate the critical mass for spherical, unreflected 
Pu(4.5) metal system with a density of 19.8 g/cm3, 
assuming that the initial density for this system was 
15.6 g/cm3. 

10.4 kg 10.4 kg 
(Ref. 5, Fig. III.A.6-2) 

4.4.2 

Calculate the critical radius for spherical, unreflected 
Pu(5) metal system with a density of 9.9 g/cm3 
assuming that the initial density for this system was 
19.8 g/cm3. 

10.0 cm 10.1 cm 
(SCALE5, Keno V.a) 

4.4.3 

Calculate the critical mass for a spherical, 
unreflected 239PuO2 system with a density of 1, 3, 5, 
7, and 9 g/cm3, assuming that the initial density for 
this system was 11.46 g/cm3. 

1 g/cm3 – 4084 kg 
3 g/cm3 – 453 kg 
5 g/cm3 – 163 kg 
7 g/cm3 – 83 kg 
9 g/cm3 – 50 kg 

1 g/cm3 – 4080 kg 
3 g/cm3 – 453 kg 
5 g/cm3 – 163 kg 
7 g/cm3 – 83 kg 
9 g/cm3 – 50 kg 

(Diffusion Theory 
Calculations from 

Section 2.5.6) 

4.4.4 

Calculate the water-reflected critical mass for a 
spherical, Pu(5) metal system with a density of 15.75 
g/cm3 if the Pu core had an initial density of 19.8 
g/cm3. 

8.2 kg 8.25 kg 
(SCALE5, Keno V.a) 
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9.3 Confidence in Array Hand Calculations 

 
The example problem results presented in Chapters 5 through 7 along with the corresponding 

comparison result are summarized in Tables 20, 21, and 22. The solid angle method chapter did not 
have example problems to include in this comparison exercise. 
 

Table 20. Surface Density Method Confidence Comparison 
 

Section Description of the Problem 
Hand 

Calculation 
Result 

Comparison Result 
from Reference or 

Code Package 
(Critical Spacing) 

5.4.1 

What is the minimum spacing for a planar array of 2-
liter bottles of Pu, with 5 wt. % 240Pu, solution, 
assuming a maximum concentration of 400 gPu/l?  The 
array is assumed to be only one unit high (i.e., no 
stacking). 

 
25.0 cm 

keff ≈ 0.896 
 

~23.1 cm 
 (SCALE5, Keno V.a, 
238-group ENDF/B-V 

library) 

5.4.2 

What is the minimum center-to-center spacing for an 
infinite planar array of plutonium oxide (239PuO2) 
containers loaded with 4,500 grams of Pu per 
container?  

28.4 cm 
keff ≈ 0.88 

~19.5 cm 
 (SCALE5, Keno V.a, 
238-group ENDF/B-V 

library) 

5.4.3 
What is the minimum center-to-center spacing of an 
infinite planar array of 4,500 g Pu(5) metal ingots.   

36.0 cm 
keff ≈ 0.88 

~25.0 cm 
 (SCALE5, Keno V.a, 
238-group ENDF/B-V 

library) 
 

 

                                                        
 
6 This represents the keff for the hand calculated spacing result based on a SCALE5, Keno V.a calculation. 
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Table 21. Density Analog Method Confidence Comparison 
 

Section Description of the Problem 
Hand 

Calculation 
Result 

Comparison Result 
from Reference or Code 

Package (Critical 
Spacing) 

6.4.1 

Using the density analog method, repeat the 
example problem in Section 5.4.1 for 2×2×2, 
10×10×10 and 100×100×100 arrays and compare the 
results. Recall that each unit of the array contains a 
2 liter bottle of Pu(5) solution with a maximum 
concentration of 400 gPu/l. 

2×2×2 
17.8 cm7 
10×10×10 
39.8 cm 

keff ≈ 0.968 
100×100×100 

126 cm 

2×2×2 
No minimum spacing 
required, keff = 0.94  

with no spacing 
10×10×10 
~36.5 cm 

100×100×100 
~108.0 cm 

(SCALE5, Keno V.a) 

6.4.2 

Using the density analog method, repeat the 
example problem in Section 5.4.2 for 2×2×2, 
10×10×10 and 100×100×100 arrays. Recall that each 
container in the array contains Pu oxide (239PuO2) 
loaded with up to 4,500 grams of Pu. 

2×2×2 
18.6 cm 

10×10×10 
41.6 cm  

keff ≈ 0.88 
100×100×100 

132 cm 
 

2×2×2 
~10.6 cm 
10×10×10 
~34.0 cm 

100×100×100 cm 
~109.6 cm 

(SCALE5, Keno V.a) 

6.4.3 

Using the density analog method, repeat the example 
problem in Section 5.4.3 for 2×2×2, 10×10×10 and 
100×100×100 arrays. Recall that each fissile unit in 
the array is a 4,500 g Pu(5) metal ingot. 

2×2×2 
25.7 cm 

10×10×10 
57.4 cm 

keff ≈ 0.91 
100×100×100 

182 cm 

2×2×2 
~15.0 cm 
10×10×10 
~41.7 cm 

100×100×100 
~137.0 cm 

(SCALE5, Keno V.a) 
 

                                                        
 
7 The density analog method provides a center-to-center spacing between solution units in the array that is 

more reactive than similar arrays with metal units. Thus, some care should be exercised when using this 

method with thermal systems. 
8 This represents the keff for the hand calculated spacing result based on a SCALE5, Keno V.a calculation. 
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Table 22. Limiting Surface Density Method Confidence Comparison 
 

Section Description of the Problem 
Hand 

Calculation 
Result 

Comparison Result from 
Reference or Code 

Package9  

7.4.1 
(EP 1) 

Repeat example problem in Section 5.4.2 for 2×2×2, 
10×10×10 and 100×100×100 arrays. Recall that each 
container in the array contains Pu oxide (239PuO2) loaded 
with up to 4,500 grams of Pu. 

2×2×2 
Not Applicable 

10×10×10 
35.7 cm 

100×100×100 
114.7 cm 

2×2×2 
~10.6 cm 
10×10×10 
~34.0 cm 

100×100×100 cm 
~109.6 cm 

(SCALE5, Keno V.a) 

7.4.2 
(EP 2) 

Repeat the example problem in Section 5.4.3 for 2×2×2, 
10×10×10 and 100×100×100 arrays. Recall that each fissile 
unit in the array is a 4,500 g Pu(5) metal ingot. 

2×2×2 
Not Applicable 

10×10×10 
42.4 cm 

100×100×100 
136.4 cm 

2×2×2 
~15.0 cm 
10×10×10 
~41.7 cm 

100×100×100 
~137.0 cm 

(SCALE5, Keno V.a) 

7.4.3 
(EP 3) 

Calculate the critical mass for each array unit required for a 
water-reflected cubic array of fully enriched U(100) metal 
units spaced 30 in. (76.2 cm) center-to-center. After the 
critical mass is calculated, determine the multiplication 
factor for storing 20 kg of U(100) units in the 4×4×4 array. 

34.3 kg 
keff = 0.84 

 
 

~34.3 kg 
keff  ≈ 0.85 

 
(SCALE5, Keno V.a) 

7.4.4 
(EP 4) 

Calculate the critical mass for each array unit required for a 
water-reflected cubic array of Pu(5.2) metal units spaced 30 
in. (76.2 cm) center-to-center.  After the critical mass is 
calculated, determine the multiplication factor for 5 kg 
Pu(5.2) metal array units. 

9.03 kg 
keff = 0.82 

 
 

~8.93 kg 
keff  ≈ 0.83 

 
(SCALE5, Keno V.a) 

7.4.5 
(EP 5) 

Based on the results of the last example problem in Section 
7.4.4, calculate the required center-to-center spacing 
between array units to provide a multiplication factor of 0.9. 

m = 6.58 kg 
keff = 0.90 

 
 

m = 6.58 kg 
keff ≈ 0.91 

 
 (SCALE5, Keno V.a) 

7.5.1 
(EP 6) 

Repeat the example problem in Section 7.4.4 for an 8x4x2 
array, using the methodology presented in Section 7.4 for 
U(100) metal units. 

9.03 kg 
 
 

~8.93 kg 
keff  ≈ 0.83 

 (SCALE5, Keno V.a) 

7.6.1 
(EP 7) 

Repeat the example problem in Section 7.4.3 for an 8×4×2 
array, using the methodology presented in Section 7.6 for 
U(100) metal units. 

35.9 kg 
35.9 cm 

(SCALE5, Keno V.a) 

7.6.2 
(EP 8) 

Part 1. Calculate the spherical critical mass of U(93.2) 
metal required for criticality in a 216-unit water-reflected 
cubic array. The center-to-center spacing (2a) of the array 
units is 38.1 cm.    
Part 2. What would be the multiplication factor of this 
array if the units were rearranged into a water-reflected 
9×24×1 cuboidal array?  
Part 3. What 239Pu metal (Pu[0]) mass will result in an 
array multiplication factor of 0.9 for the 6×6×6 and 9×24×1 
arrays?   

16.4 kg 
 

keff = 0.86 
 
 

3.86 kg (6×6×6) 
keff = 0.9 

5.15 kg (9×24×1) 
keff = 0.9 

16.0 kg 
 

keff  ≈ 0.87 
 

3.86 kg (6×6×6) 
keff  ≈ 0.9 

5.15 kg (9×24×1) 
keff  ≈ 0.91 

 (SCALE5, Keno V.a) 

7.6.3 
(EP 9) 

Repeat the example problem in Section 7.2.4 for a density 
change from 18.9 g/cm3 to 15 g/cm3.   

47.5 kg 
 

~47.3 kg 
(SCALE5, Keno V.a) 

 

7.7.3 
(EP 9) 

Calculate the critical mass for each array unit required for 
the water-reflected cubic array from the limiting surface 
density example problem 3 (Section 7.3.4) for fully enriched 
U(100) metal, assuming 12 in. of concrete reflection instead 
of 7.8 in. of water reflection (20 cm as assumed by the 
limiting surface density method).   
 

30.1 kg 
keff = 0.87 

 
 

30.3 kg 
keff ≈ 0.88 

 
(SCALE5, Keno V.a) 

 

                                                        
 
9 The spacing result provided is for a critical array unless otherwise stated in the example problem. 
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9.4 Additional Confidence Comparison Results for Arrays 

 
Some calculations were performed to demonstrate the usefulness of the hand calculation 

techniques. These calculations are summarized in Table 22. To examine the various array methods, 
array experiments from a benchmark evaluation, HEU-MET-FAST-023 (Reference 30) and HEU-
MET-FAST-026 (Reference 31), was used to provide a comparison between the array hand 
calculation methods and the experimental benchmarks. This primer provides many more array 
examples. Cubic array experiments were used in the comparison with U(93.2) metal units.  
 

Table 23. Array Hand Methods Comparison Table 
 

Array Hand Method Comparison – 
Unit Center-to-Center Spacing (cm) 

Experimental Benchmark Considered Surface 
Density 

Method10 

Density 
Analog 

Method11 

NBN2 

Method12 

Critical 
Experiment 
Center-to-

Center Spacing 
HEU-MET-FAST-023 
Case 22, 4×4×4, 10.5 kg U Metal (93.2), 
15.2 cm Paraffin Reflector 

63.1 
(24.8 in.) 

31.8 
(12.5 in.) 

21.9 
(8.6 in.) 

23.8 
(9.4 in.) 

HEU-MET-FAST-026 
Case 10, Exp b-10, 3×3×3, 15.4 kg U Metal 
(93.2), 15.2 cm Paraffin Reflector 

77.5 
(30.5 in.) 

39.0 
(15.4 in.) 

25.3 
(10.0 in.) 

25.7 
(10.1 in.) 

HEU-MET-FAST-026 
Case 22, Exp c-12, 3×3×3, 20.5 kg U Metal 
(93.2), 15.2 cm Paraffin Reflector 

101.4 
(39.9 in.) 

51.1 
(20.1 in.) 

31.4 
(12.4 in.) 

30.6 
(12.0 in.) 

HEU-MET-FAST-026 
Case 32, Exp d-10, 3×3×3, 24.7 kg U Metal 
(93.2), 15.2 cm Paraffin Reflector 

127.7 
(50.3 in.) 

64.3 
(25.3 in.) 

37.1 
(14.6 in.) 

36.5 
(14.4 in.) 

HEU-MET-FAST-026 
Case 9, Exp b-9, 3×3×3, 15.4 kg U Metal 
(93.2), 15.2 cm Paraffin Reflector 

77.5 
(30.5 in.) 

39.0 
(15.4 in.) 

25.3 
(10.0 in.) 

25.2 
(9.9 in.) 

HEU-MET-FAST-026 
Case 21, Exp c-11, 3×3×3, 20.5 kg U Metal 
(93.2), 15.2 cm Paraffin Reflector 

101.4 
(39.9 in.) 

51.1 
(20.1 in.) 

31.4 
(12.4 in.) 

30.2 
(11.9 in.) 

HEU-MET-FAST-026 
Case 21, Exp d-9, 3×3×3, 24.7 kg U Metal 
(93.2), 15.2 cm Paraffin Reflector 
 

127.7 
(50.3 in.) 

64.3 
(25.3 in.) 

37.1 
(14.6 in.) 

36.0 
(14.2 in.) 

 
Note that although most of these benchmarks do not comply with the limiting surface density 

requirement of 64 or more units, the results are still quite good. The limiting surface density method 
will generally give good results for all array sizes, but the user must be aware that unless the 
limiting value is approached (i.e., 64 or more units in the array), the results are not necessarily the 
most limiting. 

                                                        
 
10 The surface density method considers an infinite planar array with a height corresponding to stack height of 

the array considered in the experiment. The method provides a subcritical center-to-center spacing result. 
11 The density analog method considers a cubic array configuration. The method provides a subcritical center-to-

center spacing result. 
12 The limiting surface density method, NBN2, provides a center-to-center spacing that results in a critical array 

configuration. 
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9.5 Conclusions 

 
Close examination of the comparisons summarized in the Section 9 tables clearly show that the 

results provided by the various hand calculation methods discussed in this primer provide very good 
results when compared with actual dimensions, MCNP5 or Keno V.a results, or experimental 
benchmarks. Thus, hand calculations can be very effective tools for a criticality safety practitioner as 
a calculation tool to provide information for controls or limits for process operations or as a starting 
point for more complex calculations. The primer can assist the criticality safety practitioner to learn 
how to use the various methods and understand their applicability and limitations. 
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11. Appendix A - Linear Extrapolation Distance for 
Diffusion Theory Hand Calculations 

 

11.1 Introduction 

 
The following information provides an in-depth discussion about linear extrapolation distance to 

support the discussion in Chapter 2 about hand calculation methods using one-group and modified 
one-group diffusion theories.  
 

11.2 Discussion 

 
In transport theory, the flux has angular dependence so the neutron currents can be accurately 

calculated. However, in diffusion theory, it is assumed that the flux is isotropic, which means that 
there is no way of calculating the flux at a vacuum boundary, as illustrated in Figure 45. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 45. Illustration of Fissile Material/Vacuum Boundary 
  
Because it is not known whether the neutron flux is not actually zero in the vacuum, a 

mathematical assumption can be made that indicates the flux approaches zero at some point in the 
vacuum. To find the point at which the flux will be defined as zero, known as the linear extrapolation 
distance, the slope of the flux at the boundary can be extrapolated to the point where the flux is 
equal to zero. Figure 46 shows the flux profile at the boundary of a system. 
 
 
 
 
 
 
 
 
 
 
 

Figure 46. Illustration of the Slope of the Neutron Flux at the System 
Boundary 
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From diffusion theory, it can be shown that the extrapolation distance, d (cm), can be defined by 
the following where D is the diffusion coefficient (cm). 

 

  d = 2! D  
 
Because the diffusion coefficient, D, can be related to the transport mean free path, the 

extrapolation distance, d, can be related to the transport mean free path. 
 

  

D =
!

tr

3
; therefore, the extrapolation distance can be rewritten as
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    A more refined transport analysis indicates that 
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,  where the macroscopic transport cross section is defined as
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where µ
0
 represents the average scattering angle cosine.

 

 
Thus, the neutron flux mathematically vanishes at the extrapolated boundary, which lies at 

0.71λtr beyond the physical boundary for the fissile material as illustrated above. The transport 
macroscopic cross section and transport mean free paths consider anisotropic scattering processes 
taking place in a fissile system where neutrons are diffusing from locations in the system with a high 
neutron density to locations with lower neutron densities (Reference 1). In most thermal systems, Σtr 
is about 0.2 to 0.4 cm–1; therefore, the extrapolation distance, d, ranges from about 1 to 3.5 cm. 
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12. Appendix B – Multiplication Factor Versus Fraction 
of Critical Mass 

 
  

This appendix provides multiplication factor data for various systems to provide calculation 
support for using the various hand calculation methods discussed in this primer. This information 
(Reference 32) provides critical mass and multiplication factor data for the following metals and 
solutions: 
 

• Highly Enriched Uranium (HEU) and plutonium (Pu) metal, bare and water reflected, and 

• HEU and plutonium solution, bare and water reflected. 

 
The critical masses for these systems are provided from Reference 32 in Tables 24 and 25. This 

information is used to determine the multiplication factor, keff, estimate based upon the fraction of 
critical mass that may be in a fissile material operation. Empirical formulae are provided to 
calculate this estimate. 

 
Table 24. Metal Sphere Critical Masses 

 
Critical Mass (kg) 

Material 
Unreflected Water Reflected 

HEU 53.8 24.4 
δPu(4.5) 17.0 8.4 
δPu(20) 19.0 9.8 
αPu(4.5) 10.6 5.8 

 
 

Table 25. Solution Sphere Critical Masses 
 
 
 
 
 
 
 
 
 
 
 
 

 
According to Reference 32, a reasonable estimate of the keff for HEU and Pu metals for both bare 

and water reflected configurations could be calculated with the following relationship. 
 

  
k

eff
! "

0.3 , where !  is the fraction of critical mass for this system equal to the ratio of the actual 

fissile mass present to the critical mass for the material present (Tables 24). 
 

Also, Reference 32 also defines the relationship to provide an estimate of the keff for HEU and Pu 
solutions for, again, bare and water-reflected configurations. 

 

Critical Mass (kg) 
Material 

Concentration 
(g/liter) Unreflected Water Reflected 

HEU 20 3.24 2.356 
HEU 30 1.84 1.17 
HEU 50 1.60 0.90 
HEU 200 3.19 1.45 

Pu(4) 20 1.08 0.68 
Pu(4) 30 1.05 0.60 
Pu(4) 50 1.28 0.66 
Pu(4) 200 3.97 1.80 
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k

eff
! "

0.25 , where !  is the fraction of critical mass for this system equal to, as before, the ratio of the 

actual fissile mass present to the critical mass for the material present (Tables 25). 
 

Figures 47–52 provide the multiplication factor data as a function of the fraction of critical mass 
for the HEU and Pu metal or solution systems. The metal systems compare well to the empirical 
value for the multiplication factor; however, the solutions tend to vary significantly at lower critical 
mass fractions. Based on the calculations provided in addition to the empirical data, one can 
estimate the multiplication factor sufficiently to provide assistance for hand calculations in most 
cases. Curve fits for low enriched uranium would be useful; however, that information has not yet 
been compiled. 
 
 
 

 
Figure 47. keff vs. Fraction of Critical Mass: Unreflected HEU and Pu Metal  
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Figure 48. keff vs. Fraction of Critical Mass: Water Reflected HEU and Pu 

Metal 
 

 
Figure 49. keff vs. Fraction of Critical Mass: Bare HEU Solution 
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Figure 50. keff vs. Fraction of Critical Mass: Water Reflected HEU Solution 
 
 

 
Figure 51. keff vs. Fraction of Critical Mass: Bare Pu Solution 
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Figure 52. keff vs. Fraction of Critical Mass: Water Reflected Pu Solution 
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